Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon cycling was much smaller during last ice age than in today's climate

21.11.2011
Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases and the increase of its abundance in the atmosphere by fossil fuel burning is the main cause of future global warming.

In past times, during the transition between an ice age and a warm period, atmospheric CO2 concentrations changed by some 100 parts per million (ppm) – from an ice age value of 180 ppm to about 280 ppm during warm periods.

Scientists can reconstruct these changes in the atmospheric carbon stock using direct measurements of atmospheric CO2 trapped in air bubbles in the depth of Antarctica's ice sheets. However explaining the cause of these 100ppm changes in atmospheric CO2 concentrations between glacial and interglacial climate states – as well as estimating the carbon stored on land and in the ocean – is far more difficult.

The researchers, led by Dr Philippe Ciais of the Laboratoire des Sciences du Climat et l'Environnement near Paris, ingeniously combined measurements of isotopes of atmospheric oxygen (18O) and carbon (13C) in marine sediments and ice cores with results from dynamic global vegetation models, the latter being driven by estimates of glacial climate using climate models.

Dr Marko Scholze of the University of Bristol's School of Earth Sciences, co-author on the paper said: "The difference between glacial and pre-industrial carbon stored in the terrestrial biosphere is only about 330 petagrams of carbon, which is much smaller than previously thought. The uptake of carbon by vegetation and soil, that is the terrestrial productivity during the ice age, was only about 40 petagrams of carbon per year and thus much smaller: roughly one third of present-day terrestrial productivity and roughly half of pre-industrial productivity."

From these results, the authors conclude that the cycling of carbon in the terrestrial biosphere – that is, the time between uptake by photosynthesis and release by decomposition of dead plant material – must have been much smaller than in the current, warmer climate.

Furthermore there must have been a much larger size of non-decomposable carbon on land during the Last Glacial Maximum (the period in the Earth's history when ice sheets were at their maximum extension, between 26,500 and 19,000 years ago).

The authors suggest that this inert carbon should have been buried in the permanently frozen soils and large amounts of peat of the northern tundra regions.

Paper

'Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum' by P. Ciais, A. Tagliabue, M. Cuntz, L. Bopp, M. Scholze, G. Hoffmann, A. Lourantou, S. P. Harrison, I. C. Prentice, D. I. Kelley, C. Koven and S. L. Piao in Nature Geoscience

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>