Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon cycling was much smaller during last ice age than in today's climate

21.11.2011
Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases and the increase of its abundance in the atmosphere by fossil fuel burning is the main cause of future global warming.

In past times, during the transition between an ice age and a warm period, atmospheric CO2 concentrations changed by some 100 parts per million (ppm) – from an ice age value of 180 ppm to about 280 ppm during warm periods.

Scientists can reconstruct these changes in the atmospheric carbon stock using direct measurements of atmospheric CO2 trapped in air bubbles in the depth of Antarctica's ice sheets. However explaining the cause of these 100ppm changes in atmospheric CO2 concentrations between glacial and interglacial climate states – as well as estimating the carbon stored on land and in the ocean – is far more difficult.

The researchers, led by Dr Philippe Ciais of the Laboratoire des Sciences du Climat et l'Environnement near Paris, ingeniously combined measurements of isotopes of atmospheric oxygen (18O) and carbon (13C) in marine sediments and ice cores with results from dynamic global vegetation models, the latter being driven by estimates of glacial climate using climate models.

Dr Marko Scholze of the University of Bristol's School of Earth Sciences, co-author on the paper said: "The difference between glacial and pre-industrial carbon stored in the terrestrial biosphere is only about 330 petagrams of carbon, which is much smaller than previously thought. The uptake of carbon by vegetation and soil, that is the terrestrial productivity during the ice age, was only about 40 petagrams of carbon per year and thus much smaller: roughly one third of present-day terrestrial productivity and roughly half of pre-industrial productivity."

From these results, the authors conclude that the cycling of carbon in the terrestrial biosphere – that is, the time between uptake by photosynthesis and release by decomposition of dead plant material – must have been much smaller than in the current, warmer climate.

Furthermore there must have been a much larger size of non-decomposable carbon on land during the Last Glacial Maximum (the period in the Earth's history when ice sheets were at their maximum extension, between 26,500 and 19,000 years ago).

The authors suggest that this inert carbon should have been buried in the permanently frozen soils and large amounts of peat of the northern tundra regions.

Paper

'Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum' by P. Ciais, A. Tagliabue, M. Cuntz, L. Bopp, M. Scholze, G. Hoffmann, A. Lourantou, S. P. Harrison, I. C. Prentice, D. I. Kelley, C. Koven and S. L. Piao in Nature Geoscience

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

nachricht The shelf life of pyrite
14.10.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>