Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atacama Desert - Life under extreme drought conditions

27.02.2018

The core region of the Atacama Desert is one of the most arid places on Earth. However, scientists have found microorganisms there. But it has remained unclear whether these environments support active microbial growth or whether the observed cells were introduced by wind transport and subsequently degraded. Detailed analyses by an international research team show: Even in the most arid zones of the Atacama a microbial community exists which becomes metabolically active following episodic increase in moisture after rainfalls.

The core region of the Atacama Desert in South America is one of the most arid places on Earth. Sometimes it is raining only once in a decade or even less, the annual precipitation is far less than 20 mm. The dry conditions resulted in high salt concentrations in the soil and low organic matter content. However, scientists have found microorganisms there.


Sampling site Lomas Bayas in the core region of the Atacama

Dirk Schulze-Makuch, TU Berlin


Comparison: The surfaces of Mars and the Atacama Desert

NASA (left) / Alessandro Airo, TU Berlin (right)

But it has remained unclear whether these environments support active microbial growth or whether the observed cells were introduced by wind transport and subsequently degraded. Detailed analyses by an international research team show: Even in the most arid zones of the Atacama a microbial community exists which becomes metabolically active following episodic increase in moisture after rainfalls.

The new findings, published in the journal “PNAS”, are important for evolution of life and landscapes on Earth. Moreover, the results have implications for the prospect of life on other planets – certainly for Mars.

The scientists took soil samples at six different locations in the Atacama Desert between 2015 and 2017. “We have chosen sample locations along a profile of decreasing moisture from the coast up to extreme arid conditions in the core region of the Atacama”, explains first author Dirk Schulze-Makuch from the TU Berlin. “This gradient should be reflected in the life-friendly conditions – we call it habitability – as well as in the number and diversity of the microorganisms.”

To get the whole picture the scientists used a broad range of complementary methods carried out at several geoscientific institutions in Berlin and Potsdam together with international partners. Amongst others the team conducted physico-chemical characterizations of the soil habitability and molecular biological studies. The latter were done mainly at GFZ German Research Centre for Geosciences in Potsdam where intracellular and extracellular DNA was analysed.

“With this method we can find out which microorganisms really exist at the different locations in the Atacama probably doing metabolism and which ones are only represented by their naked DNA in the sediment as a signal from the past,” says Dirk Wagner, Head of GFZ-Section for Geomicrobiology and one of the leading authors of the article. “Further investigations like tests on enzymes have shown that the suspected organisms in most cases are in fact metabolically active.”

To scientists it is not only important to know where microbial life exists, it is also relevant to know about changes over time. Here they were lucky: First sampling in April 2015 occurred shortly after an unexpected rain event. The moisture had positive effects on life and activity in the desert. This is documented in samples taken and analysed in the following years in February 2016 and January 2017. “We can clearly show that some time after a precipitation event, the abundance and biological activity of microorganisms decreases”, says Wagner.

But the organisms, which are predominantly bacteria, do not completely die off. According to the authors, single-celled organisms are found mainly in the deeper layers of the Atacama Desert where they have formed active communities for millions of years and have evolved to cope with the harsh conditions.

The findings from the South American desert are very useful for the question of life on other planets, especially in relation to Mars. Martian climate was initially humid, rivers and lakes had existed before the desertification began. No rain can fall from the thin Martian atmosphere today but liquid water can be present near the surface due to nightly snowfall. Additionally, there is fog and on some slopes also salty brines, which sporadically flow down and thus provide fluids.

However, the exposure to hard radiation at the surface is much greater than on Earth. Based on the results of the study, the authors come to the conclusion: If life ever evolved on Mars in the past, under better conditions, it could have endured the transition to hyper-arid conditions and perhaps even be found in subsurface niches today.

Study: A Transitory Microbial Habitat in the Hyperarid Atacama Desert, Dirk Schulze-Makuch, Dirk Wagner, Samuel Kounaves et al., PNAS, DOI: 10.1073/pnas.1714341115

Ralf Nestler | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

Further reports about: Atacama DNA GFZ Helmholtz-Zentrum Martian atmosphere desert microorganisms moisture

More articles from Earth Sciences:

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Turbulence creates ice in clouds
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Researchers discover a new way in which insulin interacts with its receptor

18.11.2019 | Life Sciences

Bacterial protein impairs important cellular processes

18.11.2019 | Life Sciences

A better understanding of soft artificial muscles

18.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>