Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerial imagery gives insight into water trends

12.02.2018

With an ever-growing human population and its inherent demand for water, there is a critical need to monitor water resources. New technology could make it more feasible than ever to measure changes in the water flow of rivers.

Tyler King and Bethany Neilson, researchers at Utah State University, have developed a new method to estimate river discharge using aerial imagery gathered from helicopters and drones. Their new study, published Feb. 7 in Water Resources Research, found that aerial imaging can be just as accurate as older, more expensive field methods in some cases.


USU researchers published a study that shows how high resolution aerial imagery can be used to estimate flows along smaller rivers and streams.

Credit: USU


Researchers at Utah State University developed a new method to estimate river discharge using aerial imagery taken from helicopters and drones.

Credit: USU

These alternative methods for monitoring water resources are necessary to continue meeting global water demands while simultaneously easing the impacts of floods and droughts.

"We are headed into uncharted territory as climate change alters water supply and population growth increases demand," said Tyler King, a PhD candidate and co-author of the study. "In the face of these challenges, scientists, engineers and managers around the world are asked to perform the increasingly difficult task of managing water resources with less and less information."

There are a limited and dwindling number of locations where river discharge is measured directly at gauging stations. Establishing and maintaining these stations is expensive and time consuming. As a result, preference is often given to large rivers of significant economic and social importance.

Additionally, other remote sensing methods have been developed, but rely on relatively coarse data collected by satellites and, as such, also focus on the larger rivers of the world. As a result, scientists lack a complete view of what is happening in smaller river basins, leaving limited understanding of the processes controlling river water quantity and quality.

King and Neilson's approach aims to fill this data gap by using high resolution aerial imagery to estimate flows at many locations along smaller rivers and streams. This complements both traditional gauging station networks that are tied to a limited number of specific locations along river networks and satellite based remote sensing methods that are used to estimate flows in larger rivers.

Their basic approach uses a unique combination of image processing techniques and hydraulic modeling that limits the amount of data required to estimate river discharge. Their method overlaps aerial images to produce three-dimensional digital elevation models of the river channels.

This information is then used within a hydraulic model to approximate the relationship between river discharge and river width. Once these models are built, any following observations of river width -- including satellite imagery, aerial imagery or ground observations -- can be used to estimate river discharge.

"Remote sensing methods like these can significantly improve our ability to understand hydrologic responses to a changing climate in small, ungauged watersheds around the world," said Neilson, an associate professor at USU and co-author of the study.

###

Direct Researcher Contact: Bethany Neilson - Associate Professor, Utah State University | bethany.neilson@usu.edu | office: (435) 797-7369

Tyler King - PhD Candidate, Utah State University | tylerking@aggiemail.usu.edu | office: (435) 797-0748

For additional media assistance contact: Grace Michaelson - USU College of Engineering | grace.michaelson@usu.edu | office: (435) 797-8170 | mobile: (702) 524-1070 | engineering.usu.edu | @engineeringUSU

Media Contact

Bethany Neilson
bethany.neilson@usu.edu
435-797-7369

http://www.usu.edu 

Bethany Neilson | EurekAlert!
Further information:
https://engineering.usu.edu/news/main-feed/2018/aerial-view-of-water-trends
http://dx.doi.org/10.1002/2017WR021868

Further reports about: USU remote sensing satellite water resources water trends

More articles from Earth Sciences:

nachricht Long-distance travels complicate conservation of migratory birds
23.10.2018 | Humboldt-Universität zu Berlin

nachricht Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin
19.10.2018 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Fraunhofer FIT at MEDICA and COMPAMED: Electrowetting and Telemedicine

23.10.2018 | Trade Fair News

memory-steel - a new material for the strengthening of buildings

23.10.2018 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>