Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With a crush: A Jurassic brother of the enigmatic tuataras

01.11.2012
Tuataras are often regarded as a classic example of a living fossil. They are the last survivors of an ancient lineage, which is said to have lost the evolutionary struggle with the modern lizards.

A new find from the Late Jurassic (c. 148 Ma ago) of southern Germany demonstrates that the fossil relatives of the tuatara showed a much greater evolutionary plasticity than previously recognized and were at the height of their ecological diversity at a time, when modern lizards were already widespread. This challenges the idea of their evolutionary inferiority and suggests that other reasons might be responsible for their decline.


Figure 1 (Tuatara.jpg): The tuatara, Sphenodon puctatus, which grows to up to 50 cm in length and lives on a few islands off the coast of New Zealand. Photo courtesy Helmut Tischlinger.
Photo: Helmut Tischlinger


Figure 2 (Oenosaurus.jpg): The skull of Oenosaurus in palatal view, with the tooth plates being well visible. Scale bar is 1 cm.
Photo: SNSB

It looks like a “normal” lizard, but belongs to an ancient lineage apart from modern lizards: the Tuatara, which is represented by only two species that live on a few islands off the coast of New Zealand. With a brain and mode of locomotion that is said to be intermediate between amphibians and reptiles, tuataras are among the most enigmatic living animals and are often regarded as living fossils, as a perfect model for an ancient lizard ancestor.

However, their parent lineage, the Rhynchocephalia ("Beak Heads") were wide-spread and diverse during the Mesozoic, the “age of dinosaurs”. To answer the question what led to their decline in the late Mesozoic seemed easy enough: with their obviously primitive appearance, rhynchocephalians were clearly inferior to the true lizards and even more so to the primitve mammals that radiated at that time. Were they really?

A new fossil relative of the tuataras found in the latest Jurassic of southern Germany challenges this idea, in line with other recent finds of rhynchocephalians. In a paper recently published in the scientific journal PLoS One, the German brother of the tuataras was given the name Oenosaurus muehlheimensis, revering the exquisite wine of the Franconian Alb and the village of Mühlheim, close to the place where the fossil was found. Oenosaurus closely resembles the living tuataras, but it has a dentition that is unique amongst tetrapods.

“When the specimen was found and only the palatal view of the skull was visible, we were all wondering what kind of animal it might be”, recalls Dr. Oliver Rauhut of the Bavarian State Collection for Palaeontology and Geology, the lead author of the study: “no one of us had ever seen such teeth in a reptile.” The dentition of Oenosaurus consists of massive tooth plates, the structure of which indicates that they might have been growing continuously, balanced by wear on the surface of the plate. Such teeth are otherwise only found in chimaeran and dipnoan fishes.

“We analysed the tooth plates with the help of computer tomography, and when I showed the pictures to a colleague who is specialized in the microstructure of fish teeth, she first found nothing unusual – until I told her that these were the teeth of a reptile”, says Dr. Adriana López-Arbarello, fish expert of the State Collection and one of the co-authors of the paper. “Then she almost couldn’t believe it”, she adds with a little smile. This discovery represents a previously unknown trophic adaptation in rhynchocephalians, indicating a diet of hard-shelled organisms. Rhynchocephalians otherwise have a very specialized kind of dentition, well adapted to cutting or tearing functions, which has been hypothesized to limit their evolutionary adaptability.

Thus, the dentition of Oenosaurus demonstrates an unexpected evolutionary plasticity in these animals and underlines the fact that rhyncocephalians were actually highly diverse, both morphological and ecological, during the latest Jurassic in Europe, just before the decline of this lineage on this continent. This contradicts the popular view that rhynchocephalians were inferior to lizards and early mammals and that selection pressure by these animals is sufficient to explain the demise of the group in the late Mesozoic; instead, climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role.

The remains of Oenosaurus were found by Roland Pöschl in the outcrops of the Mörnsheim Formation in the Schaudiberg quarry in Mühlheim near Mörnsheim, central Bavaria, Germany. The owners of the quarry immediately recognized the scientific value of the fossil and kindly donated it to the Bayerische Staatssammlung für Paläontologie und Geologie in Munich. The Mörnsheim Formation is slightly younger than the well-known Solnhofen Formation, which, among others, has yielded the famous Urvogel, Archaeopteryx. The Mörnsheim Formation is also very fossiliferous, but much more poorly known, since, in contrast to the Solnhofen Formation, there are few commercial quarries in these rocks.

“We have just begun to explore these rocks, and more surprises are sure to come”, affirms Alexander Heyng. The geologist analyses the succession of rocks in the Schaudiberg quarry and also arranged the contact between the quarry owners and the scientists of the Bavarian State Collection. A large part of the Schaudiberg quarry is now open for exploration by visitors (http://www.besuchersteinbruch.de/), who can get actively involved in the fascinating adventure of discovering the Jurassic life and further support scientist in the challenge of deciphering the early history and evolutionary pathways of the modern organisms.

Link to article: http://dx.plos.org/10.1371/journal.pone.0046839

Contact:
Dr. Oliver Rauhut
Dr. Adriana López-Arbarello
Bayerische Staatssammlung für Paläontologie und Geologie
Richard-Wagner-Str. 10
80333 München
o.Rauhut@lrz.uni-muenchen.de
+49 / (0)89/21806645 / 0163 741 7552
a.Lopez-Arbarello@lrz.uni-muenchen.de
+49 / (0)89/21806725

Dr. Eva-Maria Natzer | idw
Further information:
http://dx.plos.org/10.1371/journal.pone.0046839
http://www.palmuc.de/bspg/
http://www.snsb.mwn.de/Joomla/index.php

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>