Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 3-D Look at Philippe Provided Clues of Transition into a Hurricane

07.10.2011
Tropical Storm Philippe took its time to strengthen into a hurricane because of wind shear problems.

The wind shear lessened, and Philippe became a hurricane today, after 12 days of moving across the Atlantic Ocean. NASA's TRMM satellite saw towering thunderstorms and intense rainfall within Philippe yesterday, which provided forecasters with a clue that the storm was strengthening. Philippe reached hurricane status this morning, Oct. 6, 2011.


A 3-D rendering of TRMM precipitation radar data on October 5 at 1:52 p.m. EDT showed deep convective towers (towering thunderstorms) reached to heights of over 13km (~8 miles).
Credit: NASA/SSAI, Hal Pierce

Over two days, the Tropical Rainfall Measuring Mission (TRMM) satellite provided forecasters with cloud heights and rainfall rates occurring within Tropical Storm Philippe. TRMM is managed by both NASA and the Japanese Space Agency, JAXA.

The National Hurricane Center (NHC) upgraded Philippe to a hurricane at 1500 UTC (11 a.m. EDT) on Thursday, October 6 2011. Earlier TRMM Microwave Imager (TMI) data from October 6, 2011 at 0024 UTC (Oct. 5 at 8:24 p.m. EDT) showed that tropical storm Philippe's center of circulation had become better defined and an eyewall was forming. Microwave satellite imagery also shows an eye-like feature, while the visible imagery from NOAA's GOES satellite hints at the indication of an eye, although mostly covered with clouds.

On Oct. 6, Philippe's maximum sustained winds were near 80 mph (130 kmh). Philippe is a Category One hurricane on the Saffir-Simpson scale, but some weakening is forecast in the next two days. Philippe is located about 425 miles (680 km) southeast of Bermuda, near 27.8 North and 60.0 West. The hurricane is moving to the north-northeast near 9 mph (15 kmh) and is expected to move toward the northeast and speed up.

The TRMM satellite also had an excellent look at Philippe earlier on Wednesday, October 5, 2011 at 1752 UTC (1:52 p.m. EDT). TRMM's Precipitation Radar (PR) scanned directly over Philippe and revealed that Philippe had bands of intense rainfall that around the southeast side of the center of circulation.

A 3-D rendering of that TRMM PR data showed deep convective towers reached to heights of over 13km (~8 miles). Previous research from NASA scientists show that whenever these "hot towers" are spotted within a tropical cyclone, the storm typically intensifies within six hours, and Philippe became a hurricane today.

Text credit: Hal Pierce/Rob Gutro
SSAI/NASA/Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2011/h2011_Philippe.html

More articles from Earth Sciences:

nachricht Shrinking of Greenland's glaciers began accelerating in 2000, research finds
12.12.2019 | Ohio State University

nachricht One-third of recent global methane increase comes from tropical Africa
11.12.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>