Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sponges and shells get settled at ZIK B CUBE

18.07.2016

ZIK B CUBE – a research center for molecular bioengineering at TU Dresden – is extending its research scope and welcomes a new junior research group led by Dr. Igor Zlotnikov. With 4.6 million Euro of financial support for 5 years from the Bundesministerium für Bildung und Forschung (BMBF, Initiative „Unternehmen Region – Zentren für Innovationskompetenz) Zlotnikov gets the opportunity to build up his team, which will study the role of internal interfaces in biological tissues formation and function.

Zlotnikov started his activities on 1 July and uses marine shells, such as the pen shell Pinna nobilis, which is one of the biggest shells worldwide, as a biological model system. He also works with glass spicules of marine sponges, such as the giant spicule of the deep-sea sponge Monorhaphis chuni.

His scientific research is based on the aim of establishing thermodynamic and mechanical models describing the role of internal interfaces in morphological regulation and mechanical behavior of mineralized tissue.

"With the knowledge from our work we will gain more insights into different fields, ranging from global aspects of earth sciences to the more specific niches in biology, chemistry and materials science", says Zlotnikov.

"The planned research is expected to provide new concepts for smart composite materials design while developing new nanomechanical characterization techniques that will be used in science and industry."


Igor Zlotnikov was born in the Ukraine and studied materials science and physics at the Technion - Israel Institute of Technology in Haifa. Since 2009, he worked as postdoctoral fellow and independent researcher at the Max Planck Institute of Colloids and Interfaces in Potsdam.

About ZIK B CUBE at TU Dresden
The Center for Innovation Competence (ZIK) B CUBE – Center for Molecular Bioengineering was founded in 2008 in conjunction with the funding by the BMBF-program „Unternehmen Region“ and sees itself as a bridge between life sciences and engineering sciences. The center is dedicated to research and development of biological materials in the three main axes Bioprospecting, BioNano Tools and Biomimetic Materials and contributes substantially to the profile of TU Dresden in the field of modern biotechnology and biomedicine. Here, the B CUBE works closely with the Biotechnology Center (Biotec) and the Center for Regenerative Therapies Dresden (CRTD) at the TU Dresden.

Press contact:

Dr. Igor Zlotnikov, ZIK B CUBE, TU Dresden, Tel.: 0351 463 40359
E-Mail: zlotnikov@bcube-dresden.de, Homepage: www.tu-dresden.de/bcube

Ines Kästner, Koordinatorin, ZIK B CUBE, TU Dresden, Tel.: 0351 463 40359
E-Mail: kaestner@bcube-dresden.de, Homepage: www.tu-dresden.de/bcube

Weitere Informationen:

http://www.tu-dresden.de/bcube

B.A. Rasha Nasr | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Reconstructing the richness of pristine oceans funded by the ERC
28.10.2019 | Johannes Gutenberg-Universität Mainz

nachricht AI for Understanding and Modelling the Earth System – International Research Team wins ERC Synergy Grant
14.10.2019 | Max-Planck-Institut für Biogeochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

With Mars methane mystery unsolved, curiosity serves scientists a new one: Oxygen

13.11.2019 | Physics and Astronomy

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>