Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manuel Endres receives Otto Hahn Medal from the Max Planck Society

04.06.2014

For his excellent doctoral thesis, the young physicist Manuel Endres has been awarded with the Otto Hahn Medal 2013.

For his excellent doctoral thesis, the young physicist Manuel Endres has been awarded with the Otto Hahn Medal 2013. Since 1978 the Max Planck Society presents this honour annually to junior scientists for groundbreaking scientific achievements connected to their doctoral thesis.


Manuel Endres (Photo: MPQ)

The award is intended to encourage highly talented people to decide for a career in fundamental research. Dr Endres receives the medal, endowed with prize money, for his new technique in detecting single atoms in optical lattices, developed in the Quantum Many-Body Systems Division of Prof. Immanuel Bloch at the Max Planck Institute of Quantum Optics.

Having finished his thesis in March 2013 Manuel Endres started to treat these topics from a more theoretical point of view, working in the Theory Division of Prof. Ignacio Cirac.

Manuel Endres (Photo: MPQ), born in Würzburg (Germany), began his education with the study of Computer Science at the University of Applied Sciences Würzburg. After his pre-diploma, he went to the Philipps-Universität Marburg to study physics. There, he received his physics diploma in 2008. His diploma thesis was supervised by Prof. Immanuel Bloch (at that time Chair of Experimental Physics at the Johannes-Gutenberg-Universität Mainz).

In 2008, Manuel Endres started to work on his doctoral thesis in the Quantum Many-Body Systems Division of Prof. Bloch at MPQ, completing in March 2013 with summa cum laude. With the support of Prof. Stefan Kuhr (now at the University of Strathclyde, Scotland) he was able to develop a novel technique for the detection of single atoms in optical lattices.

In the past years, ultracold quantum gases have proven to be excellent models of strongly interacting many-body systems, from extended stellar systems to high-tech materials. The new method aims at understanding such complex systems at the level of individual particles.

A high-resolution objective collects the fluorescence light and yields in-situ snapshots of the quantum gas, which allows for a single-site-resolved reconstruction of the atomic distribution. A series of such snap shots provides information on the particle correlations. For the first time, even non-local correlations between atoms on different lattice sites can be experimentally detected. In addition, the highly sensitive technique could be used to detect, for the first time, an ‘Higgs’ amplitude mode close to a low-dimensional quantum phase transition.

“There are, however, limitations to the method.” says Manuel Endres. “We are imaging the density including all fluctuations and correlations but do not have direct access to coherence and entanglement properties of many-body states using this technique.” In his theoretical work, he is developing schemes to overcome these limitations. “I would really like to understand what is going on in these complex systems; in particular: Which information can we actually obtain experimentally? And, how much control can we possibly achieve at the microscopic level?” Endres concludes.

During his short career, Manuel Endres has already received quite a lot of recognition. From November 2003 until March 2008, Manuel Endres received a grant from the The German National Merit Foundation. The eminent scientific value of his thesis is further underlined by two other awards: last year Manuel Endres was elected by the Münchner Universitätsgesellschaft for the Promotionspreis, in addition, his thesis “Probing correlated quantum many-body systems at the single-particle level” has been published as a book by the Springer-Verlag. Dr Endres will be presented with the Otto Hahn Medal on the occasion of the General Meeting of the Max Planck Society in Munich on June 4th, 2014. [Olivia Meyer-Streng]

Contact:

Dr. Manuel Endres
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -239
E-mail: manuel.endres@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw - Informationsdienst Wissenschaft
Further information:
http://www.mpq.mpg.de/

Further reports about: Many-Body Max-Planck-Institut Quantenoptik Quantum technique thesis

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>