Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes our brains so flexible - Bernstein Award 2012 for Tim Vogels

12.09.2012
On 12 September, the Federal Ministry for Education and Research (BMBF) conferred this year's Bernstein Award for Computational Neuroscience.

With up to 1.25 million euros, it is one of the most highly remunerated award for young scientists worldwide. The award enables outstanding young researchers to establish their own group at a German research institution.

This year's awardee Tim Vogels will establish his research group at the Humboldt-Universität zu Berlin and the Bernstein Center Berlin. The award ceremony took place during the annual meeting of the Bernstein Network Computational Neuroscience in Munich.

How is it possible that, in the continuous stream of sensory information constantly bombarding us, we can flexibly direct our attention to one out of many information sources and neglect everything else? Just imagine a big orchestra, with almost a hundred musicians. In the middle of a piece, we can specifically focus our attention on the tuba, without letting ourselves be distracted by the first violinist’s virtuosic solo. And just a moment later, we can listen to the oboe.

This flexibility and the brain mechanisms on which it is based are the subjects of Tim Vogels' research. His tools are theoretical models. With their help, he is able to simulate neural networks in a computer and use them as virtual "guinea pigs" to formulate new hypotheses, which, in turn, can provide testable predictions for neurobiological experiments. He is interested both in slow changes that are typically associated with learning processes as well as in very short-term changes that allow us to quickly change our focus of attention.

Vogels’ previous research has already provided a basis for exploring these questions. Thanks to Vogels’ and others’ models, we know today that the neural networks in the brain maintain their sensitive balance by a well-tuned combination of excitatory and inhibitory stimuli. Vogels believes that this is the key to the flexible switching mechanisms in the brain. "I imagine that excitatory stimuli and their inhibitory counterparts interact with each other like guest and doorman," said Vogels. "The qualities of both will determine the decision of which guest – which environmental stimulus – is allowed to pass and which not. But also additional external factors may play a role, such as, metaphorically speaking, whether the establishment is full already, or how many friends the guest is bringing along."

Vogels will now pursue these and other questions in Berlin, in cooperation with local scientists of the Bernstein Center and the Humboldt-Universität, in particular Michael Brecht, Henning Sprekeler, Richard Kempter and Susanne Schreiber.

Tim Vogels initially studied physics at Technische Universität Berlin. After his pre-diploma, a Fulbright scholarship offered him the opportunity to continue his studies at Brandeis University in Boston, USA. He received his PhD in 2007 in the laboratory of Larry Abbott, a pioneer of computational neuroscience and the author of one of the most widely read textbooks on the subject. After a postdoctoral stay with Rafael Yuste at Columbia University, he became a Marie Curie Reintegration Fellow in 2010, in the laboratory of Wulfram Gerstner at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

The Bernstein Award is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. Namesake of the network is the German physiologist Julius Bernstein (1835-1917).

Contact:

Tim Vogels
Laboratoire de Calcul Neuromimétique
École Polytechnique Fédérale, Station 15
1015 Lausanne
Switzerland
phone: +41 21 693 5265
email: tim.vogels@epfl.ch

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.epfl.ch
http://www.bccn-berlin.de/
http://www.hu-berlin.de/

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>