Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact Specialist to Receive Shoemaker Memorial Award

06.03.2009
University of Arizona’s planetary scientist and impact specialist H. Jay Melosh is this year’s recipient of the Eugene Shoemaker Memorial Award presented by the BEYOND Center for Fundamental Concepts in Science at Arizona State University.

As part of the honor, Melosh will deliver the annual Shoemaker Memorial lecture at 7:30 p.m. March 4 at ASU. The title of his talk is “Our Catastrophic Solar System: Impacts and the Latest Revolution in Earth Science.”

“From the impact-scarred faces of the moon and Mars, to the death of the dinosaurs, impacts have set the course of planetary evolution,” says Melosh. “We now believe that the moon itself was born in a planetary scale impact between the Earth and a Mars-size protoplanet about 4.5 billion years ago.”

Melosh, a Regents’ Professor of Planetary Science at UA’s Lunar and Planetary Lab, is a science team member of NASA’s deep impact mission that successfully cratered comet Tempel 1 on July 4, 2005.

“Impacts have brought us samples of Mars and the moon in the form of meteorites and may have transferred life from Earth to Mars or vice versa,” Melosh says. “Even now, asteroids that cut across the Earth’s orbit are being catalogued as potential threats to our civilization.

“The study of meteorite impacts has evolved from the obscure pastime of a few visionary scientists a half-century ago to the forefront of modern research,” Melosh says.

The transfer of life between Mars and Earth is something that Shoemaker himself speculated on in 1965, according to Melosh.

“It is particularly fitting to present the Shoemaker Award to Jay Melosh in the year of Darwin’s bicentenary, because Melosh was the first person to recognize that cosmic collisions can transfer life between Mars and Earth. It is now generally acknowledged that microbes can hitchhike on rocks blasted into space by big impacts, and travel across the solar system,” says Paul Davies, professor and director of the BEYOND Center in ASU’s College of Liberal Arts and Sciences.

Shoemaker was known for his pioneering research with his wife, Carolyn, in the field of asteroid and comet impacts. Last year’s recipient was Walter Alvarez, geologist and author of “T. rex and the Crater of Doom.” In 2007, Apollo 17 astronaut Harrison Schmitt was the first recipient of the award.

Among many other contributions to the field of astronomy, Shoemaker, his wife, and their friend David Levy, discovered a comet that collided with Jupiter in 1994. That comet was named the Shoemaker-Levy 9.

The Eugene Shoemaker Memorial Award is presented each year to a leading scientist in honor of his or her life and work.

This year’s recipient, Melosh, has received the Hess Medal from the American Geophysical Union in 2008, the Gilbert Prize from the Geological Society of America in 2001 and the Barringer Medal from the Meteoritical Society in 1999. He was a Guggenheim Fellow and a Humboldt Fellow at the Bavarian Geological Institute. He was elected to the U.S. National Academy of Sciences in 2003. The asteroid 8216 was named “Melosh” in his honor.

Melosh also is a fellow of the Meteoritical Society, Geological Society of America, American Geophysical Union, and American Association for the Advancement of Science.

His principal research interests include impact cratering, planetary tectonics, and the physics of earthquakes and landslides. His recent research includes the giant impact origin of the moon, Cretaceous-Tertiary boundary impact that extinguished the dinosaurs, ejection of rocks from their parent bodies, and origin and transfer of life between the planets.

Melosh received a doctorate in physics and geology from the California Institute of Technology and a bachelor’s degree in physics from Princeton University. He has published more than 170 technical papers, edited two books and is the author of “Impact Cratering: A Geologic Process.” He is writing a new book titled “Planetary Surface Processes.”

The BEYOND Center for Fundamental Concepts in Science is a pioneering international research center established in 2006 at ASU. This “cosmic think tank” is specifically dedicated to confronting the big questions raised by advances in fundamental science, and facilitating new research initiatives that transcend traditional subject categories.

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu
http://beyond.asu.edu/

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>