Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz Association facilitates new spin-offs

01.09.2014

The Helmholtz Association is providing up to €130,000 of funding for each of four new spin-off proposals by Helmholtz researchers. This brings the total number of Helmholtz centre spin-offs funded by the Association through its Initiative and Networking Fund to 86 since 2005.

The Helmholtz Enterprise funding programme supports spin-offs during the critical start-up phase, helping research findings to be applied rapidly for the benefit of society and the economy.

Enabling research findings to be rapidly translated into practical applications is one of the Helmholtz Association’s primary aims, according to Rolf Zettl, Managing Director of the Association.

“For achieving this goal, we support scientists from our centres who aim to take their ideas and become entrepreneurs, above all in the difficult early stages”, he says, adding that the Helmholtz Enterprise programme is also a great help in other aspects, such as covering the staff shortages which arise at the individual Helmholtz Centres when spin-offs are set up.

“We also give our scientists who are founding a spin-off the necessary resources to enable them to develop their business plan, for example.” The support given also includes the provision of external management experts and intensive consultancy provided by the Helmholtz Centre transfer points.

The four new projects to be funded are:
1.) Commercializing DESY detectors – commercial distribution of technologically advanced X-ray cameras
This spin-off project opens up new opportunities for commercialising LAMBDA, an x-ray detector developed in the DESY accelerator centre. LAMBDA is the first detector capable of producing x-ray images in colour, providing valuable additional information about the subject under examination. The detector also operates at high speed to create very detailed images in high resolution, delivering a greatly improved data set in a very short space of time compared to standard detectors. This is particularly advantageous for large-scale research apparatus, as it enables several examinations to be carried out at the same time. The aim is to make the detector available for other synchrotrons and x-ray sources in the field of high-end experiments through collaboration with the planned spin-off X-Spectrum GmbH, which will take on the commercial distribution of the detector including installation, initial operation and maintenance.
Contact: Prof. Dr. Heinz Graafsma
Tel.: +49 (0)40 8998 1678
E-mail: heinz.graafsma@desy.de
Deutsches Elektronen-Synchrotron (DESY)

2.) ELiSE – Marine plankton provide models for light structure engineering
An interdisciplinary team of founders from the Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research (AWI) is setting up ELiSE GmbH as a spin-off. In a first step, the business model was developed with the help of start-up funding and the new company is now ready to be launched. The basis for this spin-off is the bionic process known as ELiSE (Evolutionary Light Structure Engineering) developed at the centre, whereby light structure engineering is improved by the systematic use of a variety of naturally pre-optimized light-weight structures modelled on marine plankton. This procedure differs from other optimization methods in the huge range of structures shown by the natural models, making it capable of generating several significantly different variant solutions in each case. The ELiSE development process has already been applied successfully in a range of industrial projects. The main target industries are the automotive industry, the aerospace industry, mechanical engineering, medical technology and consumer goods.
Contact: Dr Christian Hamm
Tel.: +49 (0)471 4831 1832
E-mail: christian.hamm@awi.de
Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research (AWI)

3.) Sunbelt Energy Technologies – solar tower system with integrated energy storage system for the production of electricity and heat for industrial high-temperature processes
The solar tower system under development is designed for the production of electricity and heat for high-temperature industrial processes in countries which get a lot of sun. The system was developed at the German Aerospace Center (DLR), using its expertise in solar receivers and related system technologies. The concentrated solar power is directly absorbed by nearly black ceramic particles in the receiver. The particles are used in a cycle both to absorb the energy and to store it. The system delivers hot air with an integrated storage system to compensate for fluctuations in solar radiation and can even provide energy at night. The system’s unique selling point is the receiver’s basic components. The proposed spin-off will take over the commercial exploitation of the technology as soon as the system’s validation at the solar tower in Jülich has been successfully completed.
Contact: Lars Amsbeck
Tel.: +49 (0)711 / 6862-306
Email: lars.amsbeck@dlr.de
German Aerospace Center (DLR)

4.) CLASS 5 PHOTONICS – Developing and marketing an innovative high-performance femto-second laser
The planned spin-off CLASS 5 PHOTONICS of the Deutsches Elektronen-Synchrotron (DESY) and the GSI Helmholtz Centre for Heavy Ion Research will be located on the DESY campus as a high-tech company. It will develop and market OPCPA laser amplifiers with record average power and pulse duration. The spin-off will provide commercial solutions for femto-second lasers with innovative amplifier technology for the first time. The laser provides new levels in average power and short pulse duration, achieving a ten-fold increase in process speed. It also enables the miniaturisation of high-brilliance x-ray sources.
Contact: Dr. Robert Riedel
Tel.: +49 (0)40 8998 1952
E-mail: robert.riedel@desy.de
Helmholtz Institute Jena

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; and Aeronautics, Space and Transport. With almost 36,000 employees in 18 research centres and an annual budget of approximately €3.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the media:

Janine Tychsen
Stellvertretende Leiterin Kommunikation und Medien
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Dr.-Ing. Jörn Krupa
Stabsstelle Technologietransfer
Tel.: 030 206 329-72
joern.krupa@helmholtz.de

Kommunikation und Medien
Büro Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Weitere Informationen:

http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Helmholtz-Gemeinschaft

Further reports about: DESY Energy Helmholtz Marine detector develop electricity heat structures

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>