Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Durham University gets £16.7million grant to unravel secrets of the Universe

27.01.2009
Durham University physicists have received a £16.7m grant to unravel the secrets behind the formation of the Universe.

The ten-year grant has been awarded by the Science and Technology Facilities Council (STFC) to the University’s Institute for Particle Physics Phenomenology (IPPP).

The IPPP is a research centre dedicated to understanding what happens when high energy particles are smashed into each other at very high energies.

Experts from the IPPP are providing the theory and analysis behind a number of experiments to be carried out at the Large Hadron Collider (LHC), a gigantic particle accelerator built 100m underground on the Swiss/French border at Geneva, which aims to recreate conditions in the early Universe just after the Big Bang.

The new funding will allow the IPPP’s physicists to continue their world-class research into some of the Universe’s greatest secrets such as the mysteries surrounding antimatter and dark matter, the possibility of extra space-time dimensions and the existence of the elusive Higgs boson.

The centre is funded in partnership between the STFC and Durham University and the new grant will be enhanced by increased investment from the University.

Durham University’s increased investment will provide an extension to the Ogden Centre, which houses the IPPP, massively upgraded computer facilities and new permanent academic appointments.

It will also mean additional research positions and further funding for workshops, visitors and travel to support the wider UK phenomenology community.

Professor Nigel Glover, Director of the IPPP, said: “The IPPP has already won an international reputation for its research into particle physics.

“The new funding from STFC, together with the new investment from Durham University, will allow us to continue this vital link between theory and experiment and ensure that UK particle physics continues to thrive and play a pivotal role in large, ground-breaking experiments such as the Large Hadron Collider.

“It will also help the UK prepare for and contribute to the design and planning of physics programmes at future new facilities.”

The interplay between theory and experiment is vital to new developments and breakthroughs in particle physics and the understanding of our Universe.

Phenomenology is not only concerned with making theoretical predictions that can be tested by experimental facilities but also with using the experimental data gathered at these facilities to find evidence for new physics and to develop new theories. Close collaboration with experimental colleagues is a vital aspect of the work.

Projects like the LHC rely heavily on this marriage of theory and experiment as they are likely to produce completely new and unexpected results that will need interpreting.

Professor Keith Mason, Chief Executive of the STFC, said: “Funding the IPPP is a key element of STFC’s continued support of fundamental physics and we welcome the large investment in staff and buildings by the University.

“Since its creation in 2000, the IPPP has been a tremendous success and has revitalised phenomenology in the UK.”

Alex Thomas | alfa
Further information:
http://www.durham.ac.uk
http://www.ippp.dur.ac.uk/
http://www.scitech.ac.uk/

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>