Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Devices for organic high-capacity memories

06.08.2014

Kamal Asadi, a physicist at the Max Planck Institute for Polymer Research, receives the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation.

With this award, which is endowed with 1.65 million euros, the Humboldt Foundation singles out outstanding research talents with innovative research methods. Kamal Asadi is working at the MPI-P as a project leader, investigating electronic devices based on organic materials. The award enables him to develop an independent research group at the MPI-P with protected financing over the coming five years.


Dr. Kamal Asadi receives the Sofja Kovalevskaja Award

MPIP

Mainz/Bonn. Kamal Asadi from the Max Planck Institute for Polymer Research in Mainz receives one of the highest German scientific awards from the Alexander von Humboldt Foundation. He studies materials and physics of future organic memory devices.

“It is very exciting to step into an unexplored field thus far: organic multiferroics. And I’m really looking forward to actually changing the magnetization with the electric field,” Asadi says.

The hope for multiferroics
The Iranian born Kamal Asadi joined the group of Paul Blom at the MPI-P in 2013. Prior to that, he was a research scientist with the Dutch electronics group Philips. For many years, he has been conducting research on ferroelectric polymers, their materials science and device physics. His objective at MPI-P is develop organic multiferroics; composite materials that are simultaneously ferroelectric and ferromagnetics.

Ferroelectricity is the ability of certain dielectrics to demonstrate a non-zero polarization without an applied electric field, and is widely used in actuators, sensors and transducers. Ferroelectrics are also intriguing materials for memory applications due to their polarization bistability, which can be used as “0” and “1” states of the Boolean logic. Today’s memories like hard disk drives however are made of ferromagnetic materials. Ferromagnetism, a phenomenon widely known from permanent magnets, is based on the spin of the electrons and is observed mainly in metals.

Based on the classical Maxwell equations the scientific community was convinced that ferroelectricity and ferromagnetism are two mutually exclusive properties that cannot coexist in a single material. Nonetheless, in 1960s’ it was shown that there can be a weak interaction, or coupling, between ferroelectricity and ferromagnetism. Establishing the coupling between polarization and magnetization has been a challenge for experimental physicist for decades. Such material, called multi-ferroics, holds a promise for novel multi-functional data storage devices that can be written electrically and read magnetically.

Identification of multiferroic property in inorganic materials has led to worldwide research interest. Single phase multiferroics are rare, the coupling is weak and the electromagnetic response is only operative at very low temperatures. The alternatives to single phase are composites, and multi-layers of inorganic materials. The approaches have been promising, but there are still many scientific obstacles to overcome.

With the Sofja Kovalevskaja Award, Kamal Asadi is taking a totally different approach, using only organic materials. Developments of organic multiferroics that can be processed from solution are expected to lead to a revolution in novel switching devices, which is highly relevant for technology. It will be however a scientifically challenging task. For him, the first hurdle to overcome will be to build up his group at the MPI-P.

Award-winning and promoted Polymer Research
Once again a researcher of the MPI-P has succeeded in applying successfully for a conveyor price with long-term financing. During the past three years five ERC-Grants and as well as numerous participation in special fields of investigation (SFB) were donated. The MPI-P has developed with his infrastructure and his interdisciplinary adjustment to a centre of attraction for high talented researchers. This is a synergetic increasing effect which is based on wide recognition of the research achievements and the innovation potential of the institute.

Top Award for excellent research talents
The Sofja Kovalevskaja Award is one of the most valuable academic awards in Germany and allows the recipients to carry out research work under unique conditions: They may spend five years working on a research project at a university of their own choice in Germany and build up their own working groups – independently and largely untroubled by administrative constraints. The award amount may total up to 1.65 million euros per award winner. The objective is to integrate internationally sought-after research talents into collaborations with academics in Germany right at the beginning of their highly-promising careers, profiting both the research location and especially junior researchers in Germany. The award, which is granted for outstanding talent and a creative approach to research, is funded by the Federal Ministry of Education and Research.

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2014 a total of 518 people were working at the MPI-P. The work force was made up of 121 scientists, 147 doctoral and diploma students, 76 scholarship holders, and 174 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/3986516/PM7_14

Natacha Bouvier | Max-Planck-Institut

More articles from Awards Funding:

nachricht LandKlif: Changing Ecosystems
06.07.2018 | Julius-Maximilians-Universität Würzburg

nachricht “Future of Composites in Transportation 2018”, JEC Innovation Award for hybrid roof bow
29.06.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>