Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized Testing Technology for Higher Quality Automotive Software

02.05.2008
TEMEA research project ensures quality of electronic components in the automotive industry

Under the leadership of Fraunhofer FOKUS and with financial support from the Investitions­bank Berlin, the TEMEA project – Test Specification Technology and Methodology for Embedded Real Time Systems in the Automobile – has now taken up its work.

The main aims of the TEMEA project are to meet current and future demands for Quality Assurance in the automotive industry through the development and provision of standardizable testing technologies, and also to substantially lower production costs. Alongside the Fraunhofer Institutes FOKUS and FIRST, the other project partners include IT Power Consultants, Testing Technologies IST GmbH, Fourth Project Consulting and the University of Göttingen.

The project will run for three years; first results are expected in fall 2008.

“In spite of intensive efforts on the part of automobile manufacturers and their suppliers, no solutions have yet been found for dealing with problems arising from the testing and Quality Control of increasingly complex, increasingly networked systems,” says Prof. Dr. Ina Schieferdecker, TEMEA project manager at the Fraunhofer Institute FOKUS, talking about the project background. “For instance, test specifications for test systems and test solutions – many of which are proprietary – cannot be reused – neither between the original equipment manufacturer and supplier nor on a cross-project basis within the company. This leads to an unnecessarily high workload in terms of test specification and implementation, inhibits communication between producer and supplier and prevents reuse of existing test artifacts. The bottom line is that the quality of the whole vehicle suffers.”

The approach adopted by the TEMEA project is specially tailored to meet requirements-driven systematic testing of electronic components and their integration in the automobile. Based on the standardized testing technology TTCN-3, the TEMEA project seeks to develop a uniform test specification technology consisting of textual and graphical means of description for test specification, a flexibly adaptable test implementation and runtime environment, and a configured testing methodology that will satisfy the needs of suppliers and major manufacturers alike. An approach of this kind – which promises to raise the efficiency of Quality Assurance processes for software-intensive systems through standardizable technology and thus to lower their production costs – is something completely new for the automotive industry. A further special feature of the project is that it also covers current automotive industry standards such as AUTOSAR. The main project areas are

• integrated testing of discreet and continuous behavior,
• cross-platform exchange of test definitions (MiL/SiL/HiL),
• support across the whole testing and integration cycle,
• analysis of real-time and reliability requirements,
• testing of AUTOSAR components, and analysis of test quality.

Dr. Gudrun Quandel | alfa
Further information:
http://www.fokus.fraunhofer.de

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>