Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy storage for hybrid vehicles

15.08.2008
Hybrid technology combines the advantages of combustion engines and electric motors. Scientists are developing high-performance energy storage units, a prerequisite for effective hybrid motors.

The vehicle is powered by petroleum on the freeway and by electricity in town, thus using considerably less energy. A hybrid propulsion system switches over to generator operation when the brakes go on, producing electric current that is temporarily stored in a battery. The electric motor uses this current when starting up.

This yields tremendous savings, particularly in urban traffic. But up to now, hybrid technology has always had a storage problem. Scientists from three Fraunhofer Institutes are developing new storage modules in a project called “Electromobility Fleet Test”. The pilot project was launched by Volkswagen and Germany’s Federal Ministry for the Environment BMU together with seven other partners.

The Fraunhofer Institutes for Silicon Technology ISIT in Itzehoe, Integrated Circuits IIS in Nuremberg, and Integrated Systems and Device Technology IISB in Erlangen will be pooling their expertise for the next three years. The researchers are developing an energy storage module based on lithium-polymer accumulator technology that is suitable for use in vehicles.

“This module has to be able to withstand the harsh environmental conditions it will encounter in a hybrid vehicle, and above all it must guarantee high operational reliability and a long service life,” states ISIT scientist Dr. Gerold Neumann, who coordinates the Fraunhofer activities. The researchers hope to reach this goal with new electrode materials that are kinder to the environment.

A specially developed battery management system makes the energy storage device more durable and reliable. The experts are also researching into new concepts that will enable large amounts of energy to be stored in a small space. To do this, they integrate mechanical and electrical components in a single module, devising systems for temperature control, performance data registration and high-voltage safety.

The tasks involved are distributed between the three Fraunhofer Institutes according to their skills: The ISIT experts, who have long experience in developing and manufacturing lithium accumulators, are manufacturing the cells. Their colleagues at IIS are responsible for battery management and monitoring. The scientists from IISB are contributing their know-how on power electronics components to configure the accumulator modules. The development and configuration of the new energy storage module is expected to be finished by mid-2010. Volkswagen AG – the industrial partner in this project – will then carry out field trials to test the modules’ suitability for everyday use in the vehicles.

Dr. Gerold Neumann | alfa
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/08/ResearchNews082008Topic7.jsp

More articles from Automotive Engineering:

nachricht Solid state batteries for tomorrow's electric cars
22.02.2019 | Fraunhofer-Institut für Silicatforschung ISC

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>