Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Spout Nearly Doubles Maple Production, Has 1 Million Advance Orders

20.08.2009
An innovative new maple spout developed by the University of Vermont’s Proctor Maple Research Center with funding from the U.S. Department of Agriculture secured by Senator Patrick J. Leahy, will have a dramatic impact on maple syrup production and will boost job creation and economic development.

The new spout will increase sap yields by 50 to 90 percent per tree.

The announcement was made at Progressive Plastics in Williamstown, Vt., which began commercial production of the device, called a check valve spout, on August 17. Progressive Plastics is manufacturing the spout for Leader Evaporating Company of Swanton, Vt., which licensed the technology from UVM and will market and sell it.

Blocking backflow

The check valve technology was invented by Timothy Perkins, director of the Proctor Maple Research Center. It employs a valve -- a small ball that rolls back and forth in a chamber within the spout -- to block the flow back into the tree of sap containing bacteria.

All tapped maple trees pull sap back into their tap holes, as they try to balance the negative pressure established both by natural process and by vacuum tubing systems, which are pervasive in the industry. Bacterial backflow in turn causes the tree’s natural defense system to wall off the contaminated area of the tap hole, essentially plugging it and ending a sugarmaker’s season. Such walling off typically occurs late in the season.

By allowing the tree’s sap to continue to flow, the new spout will extend the sugarmaking season by one-and-a-half to two-and-a-half weeks, according to testing conducted by the Proctor and confirmed by Leader’s field testing. The sugaring season is typically four weeks long.

The tap could also mitigate the effect of global warming on the Vermont maple industry. Warming has shortened the Vermont maple season by 10% over the last 40 years, according to research conducted by Perkins.

1 million advance orders

Although Leader has not yet listed the spout in its catalog or on its web site, the company has already received 1 million advance orders. Leader is projecting sales of three million units this maple season, making the spout its number one selling product. In the future, sales could be significantly higher.

According to Gary Gaudette, president of Leader Evaporator, the check valve spout could have a revolutionary impact on the maple industry.

“It’s going to add as much to syrup and sap production as vacuum tubing did.

I’m confident that this is going to be the thing to use in the future.” There are between 50 and 55 million taps in use in North America, Gaudette said.

Both Leader and Progressive Plastics are in hiring mode despite the recession, leadership at both companies said, and both anticipate the new spout will add further to their need to bring on new staff.

Jeff Wakefield | Newswise Science News
Further information:
http://www.uvm.edu

More articles from Agricultural and Forestry Science:

nachricht Food for the city – from the city
03.09.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht How the forest copes with the summer heat
29.08.2018 | Universität Basel

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

New enclosure gives a boost to electrical engineering companies

26.09.2018 | Trade Fair News

Working the switches for axon branching

26.09.2018 | Life Sciences

Establishing metastasis

25.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>