Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new plant hormone

12.08.2008
Strigolactones also play a major role outside the plant

Scientists from the Wageningen University Laboratory of Plant Physiology and an international team of scientists have discovered a new group of plant hormones, the so-called strigolactones. This group of chemicals is known to be involved in the interaction between plants and their environment.


Two pea plants: One normal plant and a mutant that cannot produce strigolactones. The second plant is branched. The image also shows parasitic plants growing on the roots of the regular pea plant, while the mutant plant is parasite-free.

The scientists have now proven that strigolactones, as hormones, are also crucial for the branching of plants. The discovery will soon be published in Nature and is of great importance for innovations in agriculture. Examples include the development of cut flowers or tomato plants with more or fewer branches. These crops are of major economic and social importance worldwide.

The growth and development of plants is largely controlled by plant hormones. Plants produce these chemicals themselves, thus controlling the growth and development of roots and stems, for example. A number of plant hormones, such as auxins, giberellins and cytokinins, were discovered by scientists decades ago. Now a new group of hormones has been found: The so-called strigolactones.

Previous research by institutes including Wageningen UR has shown that strigolactones plays a major part in the interaction between plants and their environment. As plants cannot move, they commonly use their own chemicals to control the environment as best as they can.

Strigolactones are of major importance to the interaction between plants and symbiotic fungi, for example. These fungi live in a symbiotic relationship with plants, lthat is mutually beneficial. They transport minerals from the soil to the plant, while the plant gives the fungi sugars ‘in return’.

Unfortunately, the strigolactones have also been “hijacked” by harmful organisms: They help seeds of parasitic plants to germinate when plant roots are in the vicinity. The seedlings of the parasite attach to the root of the plant and use the plant’s nutrients for their own growth and reproduction. Unlike the symbiotic fungi, however, they do not give anything in return. On the contrary, the parasitism often causes the host plant to die, eventually.

The international research team consisting of French, Australian and Dutch scientists, coordinated in France, found mutants of pea that were branching without restraint. It turned out that these pea plants were not capable of producing strigolactones. When the plants were administered strigolactones, the unrestrained branching stopped. The same effect occurred in an entirely different plant, thale cress. The mutant plants also caused a significant lower germination of the parasitic plant seeds and induced less interaction with symbiotic fungi.

The scientists also showed that a specific ‘receptor reaction’ for the strigolactones occurs in plants, a phenomenon that is characteristic for plant hormones. Although some previously discovered plants with unrestrained branching turned out to be producing strigolactones themselves, their receptor connection was disturbed: Strigolactones administered from the outside could not stop the uncontrolled branching.

It has also been shown that the plants are capable of transporting strigolactones internally and that the chemicals work at very low concentrations, two other typical characteristics of plant hormones.

The importance of this discovery of a new group of plant hormones is emphasised by the fact that Nature is publishing an article by a Japanese team in the same issue in which similar results are presented. It is expected that this new knowledge will be applied in agriculture and horticulture, for example in breeding and the development of branching regulators.

Cut flower varieties and potted plants with either more or less branching may have special ornamental value, while crops with more or less branching may be beneficial in cultivation. Tomato plants in which less branching occurs can benefit the greenhouse horticulture, for instance.

Plant breeding and greenhouse horticulture are key agricultural industries in the Netherlands and strongly focussed on innovation.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Are cover crops negatively impacting row crops?
30.07.2020 | American Society of Agronomy

nachricht Space to grow, or grow in space -- how vertical farms could be ready to take-off
14.07.2020 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>