Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to decode the genetic secrets of prolific potato pest

28.11.2007
The full weight of a consortium of world-leading scientists – including those who helped decode the entire human genome – is being thrown at a parasitic worm less than 1mm long.

The potato cyst nematode (PCN), Globodera pallida, attacks potato crops all over the world and is particularly devastating in developing countries where the potato is a subsistence crop. A £1.7 million project led by the University of Leeds to fully sequence its DNA, hopes to shed light on the mechanisms that make the tiny worm such a successful parasite – and lead to methods to sustainably manage this pest.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), draws together experts from the University of Leeds, the Wellcome Trust Sanger Institute, Rothamsted Research and SCRI, Scotland’s leading centre for crop research.

“Although there is partial resistance in some potato varieties, it is very difficult to breed this resistance into commercial ones - so we’re tackling the problem from a different perspective,” says Dr Peter Urwin from Leeds’ Faculty of Biological Sciences. “If we can find out exactly how this worm works so efficiently, it should lead to measures that will help the potato plant to withstand attack.”

The worm invades the roots of the potato plant and injects a substance causing the plant to create a unique cell from which it feeds via a specialised tube. By doing this, the nematode stunts root growth and deprives the potato plant of essential nutrients, which leads to lower quality, smaller crops.

Says Dr Urwin: “This tiny parasite has evolved many clever mechanisms that we hope to be able to understand more fully through this research. We have no idea what this injected substance is or how it manages to persuade the plant to create the feeding cell. In addition, its eggs can remain viable in the soil for up to twenty years, with hatching triggered by sensing chemicals released by potato roots nearby. Because of this, once a field is infected, it’s almost impossible to get rid of them.”

G. pallida is an international problem, affecting the world’s two major potato growing regions – the Ukraine and Idaho, USA – as well as 18 countries in the EU and 55 countries world wide. The widespread cultivation of potato varieties such as Maris Piper, which whilst naturally resistant to other PCNs, are not resistant to G. pallida, suggests that the significance of the worm is likely to increase.

UK farmers spend in excess of £50 million a year in efforts to manage the pest. Infestations are currently treated with toxic chemicals, which do not enter the food chain, but are expensive to apply and can make soil sterile, killing other living organisms within it.

Dr Urwin says that controlling G. pallida is essential to maintain the competitiveness of UK potato industry, which together with processing and retail markets is worth some £3 billion per year (1). “We think that consumers are more likely to support UK production that avoids pesticide residues and environmental harm and that is soundly based on a sustainable approach,” he says.

The team hope to complete the sequencing by 2012.

References
(1) Figures cited from the British Potato Council

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>