Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tomatoes’ future foretold

07.03.2002


Fruit’s hidden colour reveals whether it will ripen.



Some green tomatoes have a rosy future; others do not. A sensor that picks up subtle differences in the light the fruits reflect could sort future salads from greens.

Many tomatoes are picked green and bathed in ripening gas ethylene. Fruit picked too early will never ripen. Discerning consumers avoid them and growers lose out.


A scanner that analyses the wavelengths green tomatoes bounce back can predict those that ultimately will ripen, Frederico Hahn of the Centre for Investigation of Food, Sinaloa, Mexico, has shown1. Some of the world’s annual 60 million tonnes of tomatoes could be saved this way, he hopes.

"Maybe you can find some clues that ripening will happen," agrees Ian Young who is working on similar detectors at the Delft University of Technology in the Netherlands. "We’re looking for ways to do things that the market hasn’t even thought of," says Young.

Like Hahn, fruit sorting company Colour Vision Systems, in Bacchus Marsh, Australia, uses infrared spectroscopy to measure the sugar content of melons and stone fruit. The technology could be adapted for tomatoes, concedes one of their scientists Gary Brown, though, at present, it may be too expensive.

Colour coding

Some fruit packers already use automatic colour sorters to grade the ripeness of their fruit. Conventional cameras measure red, green and blue wavelengths emitted, and classify the produce before boxing. The United States Department of Agriculture has six official colour classifications: green, breaker, turning, pink, light red and red.

But to these cameras, one green tomato looks like another. So size, shape and internal appearance are used to judge when a green crop is on the turn.

Hahn’s sensor instead measures all wavelengths over a large part of the visible and invisible spectrum. He analysed 300 green Gabriela tomatoes before storing them for 10 days.

Fruit that never ripen emit more intensely at some infrared wavelengths on day one, he found. The green pigment chlorophyll has a characteristic emission of infrared light that changes during ripening, as chlorophyll degrades and red and yellow pigments called carotenoids accumulate.

Hahn used these key wavelengths to develop a ripeness predictor. It foretold maturity with over 85% accuracy on 600 fruit, for which visual inspection proved useless.

References
  1. Hahn, F. Multi-spectral prediction of unripe tomatoes. Biosystems Engineering, 81, 147 - 155, (2002).

HELEN PEARSON | © Nature News Service

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>