Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The effects of climate change on the physiology of alfalfa

13.04.2006
The biologist Gorka Erice Soreasu, a researcher in the Department of Plant Biology of the University of Navarra, has studied the effects of climate change on the physiology of alfalfa.

This study, which forms part of his doctoral thesis, demonstrates that this plant, frequently used as feed for farm animals, adapts to increases in carbon dioxide (CO2), temperature and dryness, protecting itself in this way from the effects of climate change.

His research, which focused on the regrowth of the plant, reveals that alfalfa grows more with elevated concentrations of carbon dioxide (CO2), in particular when this condition coincides with high temperatures. The effects can be affected by other variables, such as the availability of water in the soil, which would reduce its growth and can modify its response to CO2. In addition, in the study it was confirmed that the process of photosynthesis can be stimulated or reduced by CO2, depending on the growth phase of the plant.

Variability in the responses

As this study highlighted, one of the most interesting aspects of this type of plant is the increase in nutrient storage in the roots, especially of proteins, when the plant is periodically cut back. These nutrient reserves contribute to rapid regrowth and to maintaining the perenniality of this crop. Similarly, it has been shown that a moderately dry climate maintained over time favors the accumulation of these reserve proteins, which can stimulate the growth of the plants during the following regrowth.

The results show the great variability of plant response to increases in CO2. Thus, a greater availability of CO2, which in principle should stimulate growth through increase photosynthesis, when it interacts with other variables such as the temperature or availability of water, can modify significantly the response of the alfalfa, depending on its stage of growth.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=942

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>