Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking food products from farm to the fork

07.02.2006
A prototype system designed to help consumers, farmers and other interested parties trace the geographic origin of food at all stages of production from ‘farm to fork’ - storage, processing and distribution - has been developed by researchers.

In the wake of successive outbreaks of food-borne disease in the past decade (think mad cow disease, E.coli, salmonella, etc) and the current fear over the possible spread of avian flu, public demand for tighter safeguards on the entire food production chain has never been greater.

“The certification of the origin of food products is a vital issue for Europe in the ongoing discussions with the World Trade Organisation,” explains Michel Debord, project coordinator. “Americans in particular prefer to certify the quality of a product according to its brand and attach no real importance to its origin. European consumers, by contrast, want to know where the food that they eat has come from.”

The concept behind GeoTraceAgri is to take advantage of advances in information and communication technology, satellite imaging and mapping to enable clear and precise tracking of food products that are accessible in real-time to relevant parties.

Indicating the origin of agricultural products

“The ultimate goal of GeoTraceAgri was to develop indicators of geotraceability that enable users to locate precisely the origin of agricultural products,” he says. “The advantage of this type of system is that the geographical certification is objective and verifiable, and can be viewed on the Internet using secure geoportals that have been specifically developed for this purpose.”

The first stage of the project involved defining the indicators and determining the indicator classes relevant to geographical traceability in agriculture. The various geographical scales taken into consideration included information such as the plot, field, catchments and region for which the origin of the product is certified (Region d’Appellation Contrôlée or AOC).

The next stages involved constructing a reference system for geographical traceability for selected agricultural sectors and developing the computer infrastructure needed to ensure the geographical traceability of the agricultural products.

The final prototype – built using a variety of different platforms, languages, databases, mapping engines, and spatial processing libraries – reflects both the diverse nature of the project and the wide range of expertise that the consortium partners brought to the table.

Improving management

While there has been a long-standing need for such traceability, the GeoTraceAgri project is in the happy position of coming to fruition at just the right time. Since January 2005, the new Common Agricultural Policy (CAP) requires farmers and producers in EU Member States to guarantee the quality of their produce, and to set up means of traceability using a single system of declaration.

A key aspect of the declaration system is the Land Parcel Identification System (LPIS), which utilises orthophotoplans – basically aerial photographs and high precision satellite images that are digitally rendered to extract as much meaningful spatial information as possible. A unique number is given to each land parcel to provide a unique identification in space and time. This information is then updated regularly to monitor the evolution of the land cover and the management of the crops.

The result is a growing database of European-wide geolocalised information that reinforces the basis of the concept of geotraceability and provides a firm platform for future versions of the GeoTraceAgri prototype, says Debord.

“The main benefit is that geotraceability is fully objective and certifies the declaration of origin made by the farmer or producer. Today more than 80 per cent of existing data can be geolocalised and thus visualised on the Internet using geoportals such as Google Earth,” he says.

Although GeoTraceAgri has officially completed its project duration, the real story of geotraceability is just beginning, believes Michel Debord. CDER, one of the partners involved in the GeoTraceAgri consortium, has been delegated the task of developing the prototype into a full-blown commercial product.

Also keen to build on the success of GeoTraceAgri, the European Commission gave the green light for a follow-up project, GTIS CAP (GeoTraceability Integrated System for the Common Agricultural Policy). The aim of GTIS CAP was to define and validate an integrated information system that will serve both the European and national administrative bodies in charge of the CAP and the producers of vegetal products for consumers and for livestock.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80373

More articles from Agricultural and Forestry Science:

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

nachricht Fishy chemicals in farmed salmon
11.07.2018 | University of Pittsburgh

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>