Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen may increase Bt levels in corn

07.02.2003


Scientists study the affects of nitrogen fertilizer applied to corn hybrids



Scientists at the USDA-ARS, Jamie Whitten, Delta States Research Center in Stoneville, MS, have found that Bt concentrations in young corn plants are directly influenced by the amount of nitrogen fertilizer applied at planting. The research is published in the January-February 2003 issue of Agronomy Journal.

Hybrid corn cultivars genetically modified to have the Bt-producing gene synthesize special proteins that can kill the larva of certain corn insect pests, such as fall armyworm and southwestern cornborer. The Bt corn hybrids provide farmers with an alternative to avoid costly damage from feeding by these pests without the use of pesticides.


Two corn hybrids with different types of Bt toxin were used in the experiment. These hybrids were grown in pots in the greenhouse and two plantings were made. A common fertilizer used to grow corn, ammonium nitrate, was blended into the potting mixture prior to planting. Rates of fertilizer used in the experiment represented zero, low, normal, and high amounts of nitrogen used to grow corn. Pots were carefully watered to avoid leaching of the fertilizer during the experiment. When the plants had five fully extended leaves, sample tissues were taken to determine the Bt and nitrogen concentrations of the plant.

The levels of Bt toxin and total nitrogen in the plant steadily increased as the amount of nitrogen fertilizer increased. Both Bt hybrids responded the same to increasing levels of nitrogen fertilizer.

One of the two scientists who conducted the research, Dr. H. Arnold Bruns said, "The effectiveness of Bt hybrids to avoid insect damage may be dependent on the amount of nitrogen fertilizer applied to the crop early in the growing season. Further research will be necessary to determine if similar effects to Bt concentrations can be found in more mature corn. These findings could affect the way we manage nitrogen fertilizer applications to Bt hybrid corns".


Agronomy Journal, http://agron.scijournals.org is a peer-reviewed, international journal of agriculture and natural resource sciences published six times a year by the American Society of Agronomy (ASA). Agronomy Journal contains research papers on the subjects of soil and plant relationships; crop science; soil science; crop, soil, pasture, and range management; integrated agricultural systems. turfgrass; agroclimatology and agronomic modeling; environmental quality; and integrated pest management.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.




Sara Uttech | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://agron.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht A genetic map for maize
24.02.2020 | University of Delaware

nachricht Computer vision is used for boosting pest control efficacy via sterile insect technique
24.02.2020 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>