Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gypsy Moth Management Made More Efficient, Cost-Effective

07.04.2008
A computer model that provides land managers with a more efficient and cost-effective approach for controlling gypsy moths and other invasive pests has been created by biologists at Penn State University and the University of Cambridge in the United Kingdom.

Gypsy moths, which were introduced to North America in the late 1860s, are responsible for the defoliation of over a million acres of forest land each year and the loss of tens of millions of dollars.

In a paper to be published later this month (April 2008) in the journal Ecological Applications, the team's results indicate that the best strategies for managing the destructive pests include eradicating medium-density infestations and reducing high-density infestations, rather than reducing spreading from the main infestation.

"Our model is state dependent, which means that it recommends different management strategies depending on the situation," said Katriona Shea, Penn State associate professor of biology and the team's leader. "Most managers currently use the same strategy in all situations, but our model suggests that by tailoring their approach to a particular situation, managers can be more effective in slowing the spread of invasive species."

Saving time and money is of the utmost importance with gypsy moths, which have by now spread throughout the northeastern United States and into the Midwest. "Some people argue that it's just a matter of time before the moths spread across the entire United States, so why bother trying to slow them down?" said Shea. "But we see it differently. We hope that by slowing their spread we can buy some time to find a better way to deal with them."

Although the model has little to offer those states that already have succumbed to infestation, it does have the potential to slow or halt the moths' spread into new areas. States that stand to benefit the most include North Carolina, Virginia, West Virginia, Ohio, Indiana, Illinois, and Wisconsin.

"Where I live in Pennsylvania, it's too late to slow the moths' spread because they already are prevalent across the entire state," said Shea. "It's so bad here that, at certain times, if you stand in the forest and listen, it sounds like it's raining, but what's raining is their excrement." Nevertheless, she added, "It's not too late to try to control their abundance in Pennsylvania. There is still a lot that can be done."

The model's results allow managers in those states where the moths are actively spreading to select a management strategy based on the number of medium-density and high-density infestation patches within their jurisdictions. The model ignores smaller patches because they often go extinct by themselves and, if they escape extinction as small patches, they will be detected in the model as medium patches. For example, if an area contains 20 medium patches and 20 large patches, the model suggests that managers should focus their energy and money on reducing some of those large patches to medium patches. This strategy, ultimately, would be the most effective means of controlling gypsy moths in that particular circumstance. "The model allows us to determine an exact optimal solution to a management problem," said Tiffany Bogich, a member of the reserach team who formerly was an undergraduate student at Penn State and now is a graduate student at the University of Cambridge.

"We really think this model, tailored to particular locations, could be quite useful to land managers," said Shea. "After all, we're not doing this research just to learn about the biology and ecology of gypsy moths. We want to use what we learn to make the world a better place."

This research received financial support from the U. S. Environmental Protection Agency STAR Fellowship and the U. S. Department of Agriculture.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Are cover crops negatively impacting row crops?
30.07.2020 | American Society of Agronomy

nachricht Space to grow, or grow in space -- how vertical farms could be ready to take-off
14.07.2020 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>