Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goldilocks principle in biology -- fine-tuning the 'just right' signal load

15.10.2018

In the fairy tale "Goldilock and the Three Bears", the girl Goldilock goes to the bears' house where she finds three bowls of porridge, but only one has the "just right" temperature, and in the same way within biology, you can find the "just right" conditions - called the Goldilocks principle. This is precisely what an international research team has done by demonstrating that in order to get the "just right" amount of signalling for symbiosis in the roots of legumes, a specific enzyme called chitinase (CHIT5) must be present.

Trying to transfer to other types of plants.


The concentrations of Nod factor are controlled by CHIT5 and this is important for establishing functional symbiosis (red nodules) versus defect symbiosis (white nodules).

Credit: Kasper Røjkjær Andersen, Simon Kelly and Simona Radutoiu.

Usage Restrictions: Image may be used only to illustrate the research described in the accompanying release.

More specifically, in their new studies, the researchers found that the chitinase CHIT5 present in legume roots is required for Nod factor hydrolysis and functional symbiosis. Their work reveals a new and crucial role of the legume host in modulating levels of specific rhizobial Nod factor morphogens during cortical infection to ensure functional symbiosis.

Morphogens are key signals for organized development in multicellular organisms. The crucial role of self-produced morphogens like retinoic acid or transformation growth factor-beta during embryo development has been long demonstrated.

Molecules of microbial nature have also been shown to induce a morphogenetic response in symbiotic eukaryotic hosts, and recently gained an increased attention following the increased focus on microbiome studies. The nitrogen-fixing root nodules are lateral organs induced by a microbial morphogen. In their new studies, the researchers reveal for the first time that a developmental switch in the legume plant is ensured by the host-controlled modulation of microbial morphogen, Nod factor.

Deepening our understanding of Nod factor signalling

Nod factors have been known for decades as signalling molecules produced by rhizobia to trigger and enable dinitrogen-fixing symbiosis. In addition to their signalling capacity, Nod factors have been considered morphogens based on their effect on host developmental programmes; nodule organogenesis and infection thread formation. The researchers have found that the model legume Lotus japonicus modulates the levels of the Nod factor morphogen via CHIT5 to control colonisation of nodule primordia.

chit5 mutants display an unbalanced symbiotic signalling reminiscent of what is seen in developmental arrest at an early primordia stage. We believe that our work provides the basis for a novel layer of symbiosis research, enabling a deeper understanding of Nod factor signalling during cortical infection with direct consequences for the switch to nitrogen-fixing status.

This knowledge becomes especially essential in the context of the research group's current ambitious engineering projects aiming at transferring the nitrogen fixation ability to non-legumes, which could potentially have great agricultural importance.

###

The results have just been published in the international journal eLife:

"A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis"

Anna Malolepszy*, Simon Kelly*, Kasper Kildegaard Sørensen, Euan Kevin James, Christina Kalisch, Zoltan Bozsoki, Michael Panting, Stig U Andersen, Shusei Sato, Ke Tao, Dorthe Bødker Jensen, Maria Vinther, Noor de Jong, Lene Heegaard Madsen, Yosuke Umehara, Kira Gysel, Mette U Berentsen, Michael Blaise, Knud Jørgen Jensen, Mikkel B Thygesen, Niels Sandal, Kasper Røjkjær Andersen, and Simona Radutoiu.

DOI: 10.7554/eLife.38874

For further information, please contact

Associate Professor Simona Radutoiu
Department of Molecular Biology and Genetics
Aarhus University, Denmark
radutoiu@mbg.au.dk - +45 87155498

Media Contact

Associate Professor Simona Radutoiu
radutoiu@mbg.au.dk
45-87-15-54-98

 @aarhusuni

http://www.au.dk 

Associate Professor Simona Radutoiu | EurekAlert!
Further information:
http://mbg.au.dk/en/news-and-events/news-item/artikel/goldilocks-principle-in-biology-fine-tuning-the-just-right-signal-load/
http://dx.doi.org/10.7554/eLife.38874

More articles from Agricultural and Forestry Science:

nachricht Exeter researchers discover a novel chemistry to protect our crops from fungal disease
30.03.2020 | University of Exeter

nachricht Comparisons of organic and conventional agriculture need to be better, say researchers
18.03.2020 | Chalmers University of Technology

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Extreme high-frequency signals enable terabits-per-second data links

01.04.2020 | Physics and Astronomy

The architecture of a 'shape-shifting' norovirus

01.04.2020 | Life Sciences

Hubble finds best evidence for elusive mid-size black hole

01.04.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>