Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research scientists complete two-year study on short-day onions

05.10.2010
Study addresses impact of deficit irrigation on quality and yield

Texas AgriLife Research scientists have recently completed a two-year study on the impact of deficit irrigation and plant density on the growth, yield and quality of short-day onions.

Deficit irrigation is a strategy in which water is applied to a crop during its drought-senstitive stages of development and is either applied sparingly or not at all during other growth stages, particularly if there is sufficient rainfall, reducing the overall amount of irrigation through the crop cycle.

According to crop production experts, the strategy is particularly helpful in areas where water limitations or restrictions are a significant factor.

The study's lead researcher was Dr. Daniel Leskovar, a professor and vegetable physiologist with AgriLife Research and interim resident director for the Texas AgriLife Research and Extension Center at Uvalde. Leskovar collaborated with other AgriLife Research experts in vegetable stress physiology, Shinsuke Agehara and Dr. Kilsun Yoo, both from the Vegetable and Fruit Improvement Center, part of the Texas A&M University System.

Information about the study was first presented at the 28th International Horticultural Congress held this August in Lisbon. The study was funded in part by U.S. Department of Agriculture Food for Health and Rio Grande Basin initiatives.

"The purpose of this two-year study was to investigate how deficit irrigation and plant density affect yield, quality and quercetin levels in the short-day onion, which is an important crop for Texas, especially in South Texas and the Winter Garden area," Leskovar said.

Quercetin is a plant-based flavonoid found in onions and other vegetables and it may have anti-inflammatory and antioxidant properties, and is being investigated for other possible health benefits, Leskovar explained.

"Our research on vegetable crops, including short-day onions, takes into account various genetic, environmental and agronomic pre-harvest harvest factors which are already known to have an impact on the yield, quality and phytochemical content of fruits and vegetables," he said.

During the 2007-2008 and 2008-2009 growing seasons, researchers used irrigation rates of 100 percent, 75 percent and 50 percent of crop evapotranspiration, or ETc. Crop evapotranspiration is the sum of evaporation from the soil surface and plant transpiration from the leaves into the atmosphere. The irrigation rate at each stage of development also took into account the plant size, leaf number and height, as well as the reflectance of the crop-soil surface, canopy resistance and soil evaporation.

During both seasons, onion seeds were planted at densities of 397,000 seeds per hectare (approximately 2.47 acres) and 484,000 seeds per hectare. The onions were drip-irrigated at the three different rates to determine impact on onion shoot growth and bulb-size distribution among small, medium, large, jumbo and colossal onions, plus impact on yield and quality components.

"Yield components included the marketable yield of the crop and onion bulb size," Leskovar said. "And quality aspects were gauged in terms of quantities of soluble solids, pyruvic acid and quercetin."

Leskovar said results indicated that while marketable yields and the number of bulbs increased at the higher plant density, the bulb size decreased. "Results also showed that deficit irrigation at the 50 percent of ETc had a significant impact on yield, while the yield from deficit irrigation at 75 percent was not notably less than at 100 percent and produced a similar bulb size," he said.

Leskovar said the main conclusion to be drawn from this research was that it would be possible for onion producers to adjust their planting densities and water-conservation practices, most specifically to a 75 percent ETc rate, as a means to "target high-price bulb sizes without reducing flavor and quercetin content."

Dr. Daniel Leskovar | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: AgriLife AgriLife Research Deficit irrigation ETC crop cycle plant density

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>