Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nematode and fungus team up to damage soybean

18.06.2014

Together with an international consortium, scientist at the German Julius-Kühn-Institute publishes model of the damage potential of Sudden-Death-Syndrome in PlosOne

For years a disease complex of a plant-parasitic nematode and fungal pathogen has damaged soybean fields in the Midwest of the USA. Recently Dr. Andreas Westphal of the Julius-Kühn-Institute (JKI) and his American collaborator Dr. Lijuan Xing provided mathematical evidence for the synergistic nature of the interaction of Heterodera glycines and Fusarium virguliforme (Xing and Westphal, 2013, JPDP 120:209-217). Crop rotation offers no remedy against the teamed up pathogens. Now, the international author group quantified the specific role of the two pathogens in disease severity. This report was published on June 16th in the open-access journal PLOS ONE and is available online http://dx.plos.org/10.1371/


Canopy view of diseased and healthy soybean leaves.

Photo: A.Westphal/Julius-Kühn-Institute


Microplots at the time of rating showing differences in canopy health.

Photo: A.Westphal/Julius-Kühn-Institute

journal.pone.0099529.

In collaboration with researchers from Australia, China and the US, microplot studies were conducted in Indiana. “The data were used to model the role of the fungal pathogen and the nematode quantitatively when causing the disease “, reports Westphal. This type of information enables us to predict the occurrence of sudden death syndrome and the severity of the disease.

... more about:
»Fusarium »JKI »Kühn-Institut »Plant »damage »death »fungi »nematode »soybean

“We gained insight how this important disease complex functions, while severely damaging the soybean-plants. In addition we developed new detection and quantification methods. These methods are critical for investigating and exploiting efficient management strategies of this still spreading disease“, summarizes Westphal.

Background information on the experiment design:

Tubes of 45-cm diameter were inserted perpendicular into the ground to provide the experimental context under field conditions. The plots were then infested with fungi and nematodes alone or in combination. Starting at the onset of disease, disease severity was monitored in the differently treated plots. The amount of the fungus at planting and in diseased plants was determined by a molecular quantification method called rtPCR using newly developed detection sets with specifically designed Primers.

The Australian collaborator conducted the extraction of DNA from large amounts of soil (500 g) using a method currently only available in his laboratory. The US group conducted the molecular detection of the fungus. Nematode population densities were determined by extracting and counting. A response matrix using the amounts of the pathogens as independents and the amount of disease as dependent were developed. In addition, such matrix was also used to describe the relation between the amounts of disease parameters and yield.

Author:
Dr. Andreas Westphal
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants
Institute for Plant Protection in Field Crops and Grassland
Messeweg 11-12
D-38104 Braunschweig
Germany
E-Mail: andreas.westphal@jki.bund.de

Stefanie Hahn | idw - Informationsdienst Wissenschaft
Further information:
http://www.jki.bund.de

Further reports about: Fusarium JKI Kühn-Institut Plant damage death fungi nematode soybean

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>