Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wonder Material Silicene Still Stands Just Out of Reach

13.01.2015

Silicene is the thinnest form of silicon. It is metallic, has graphene-like mobile carriers and can behave like a semiconductor. The wonder material could lead to even smaller electronics but challenges remain in this review published in the Science and Technology of Advanced Materials.

Scientists in Japan compared the properties of a hypothetical freestanding one-atom-thick layer of silicon to a similar sheet developed on a metal substrate. Although promising, this second “epitaxial” form shows important differences. Turning the hypothetical material into a reality still remains a major challenge, 20 years after it was first reported.


Structures and structural parameters of (a) diamond-structured silicon, (b) graphene, (c) disilene and (d) hypothetical, freestanding silicene

Copyright : Science and Technology of Advanced Materials

In 1994, scientists published their first theoretical report on the thinnest possible form of silicon. Among many other uses, silicon is incorporated as a semiconductor in integrated circuits, the basis of most computers.

But it was only ten years later in 2004, when another material, graphene, was reported, that scientists started showing a real interest, and eventually named the material, “silicene”.

Graphene is a one-atom-thick layer of carbon that has been shown to host the fastest carriers of electricity yet found. Compared with silicon, however, graphene is not a semi-conductor because it can’t switch between conducting and not conducting states. This makes it very difficult to apply it in a switching device such as a transistor.

This is why silicene is so exciting. In its freestanding form, this one-atom-thick layer of silicon atoms has graphene-like mobile carriers as well and is metallic. On the other hand, for instance by applying strain or an electric field, it could also be turned to behave like a semiconductor.

This is because the structure could be easily modified or switched on the atomic scale. In addition, it would be compatible with already existing silicon-based circuitry. This is envisaged to lead to the development of even smaller electronics than those currently on the market.

Because of its exciting potential, the experimental demonstration of the existence of silicene was highly anticipated. In 2012, several groups reported successfully developing “epitaxial” silicene: silicene sheets formed on metallic substrates.

A team of Japanese scientists compared the characteristic properties of theoretical freestanding silicene to epitaxial silicene they had produced on a zirconium diboride substrate. They found that the crystal structure of epitaxial silicene was strongly influenced by its metal substrate, thus resulting in electronic properties different from those predicted for the hypothetical freestanding form.

The synthesis of freestanding silicene remains a major challenge and many of the properties of its epitaxial form are not yet fully understood. However, the team of Japanese scientists joined by a few other groups worldwide will further work on the understanding of the formation mechanism of epitaxial silicene and its interaction with the substrate. Based on the deep understanding of this matter, present and future work is anticipated to result in the required developments such as the formation of silicene on an insulating platform and its successful encapsulation. This would then lead to practical applications of the material.


For further information contact:
Associate Professor Yukiko Yamada-Takamura
School of Materials Science
Japan Advanced Institute of Science and Technology
Nomi, Japan
Tel: +81-761-51-1570
E-mail: yukikoyt@jaist.ac.jp


Associated links
Link to research paper on Science and Technology of Advanced Materials

Journal information

Yukiko Yamada-Takamura and Rainer Friedlein 2014 Sci. Technol. Adv. Mater. 15 064404 doi:10.1088/1468-6996/15/6/064404

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.jaist.ac.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>