Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The breaking point

24.08.2017

It is said that a weak link determines the strength of the entire chain. Likewise, defects or small cracks in a solid material may ultimately determine the strength of that material - how well it will withstand various forces. For example, if force is exerted on a material containing a crack, large internal stresses concentrate on a small region near the crack's edge. When this happens, a failure process is initiated, and the material might begin to fail around the edge of the crack, which could then propagate, leading to the ultimate failure of the material.

What, exactly, happens right around the edge of the crack, in the area in which those large stresses are concentrated? Prof. Eran Bouchbinder of the Weizmann Institute of Science's Chemical Physics Department, who conducted research into this question together with Dr. Chih-Hung Chen and Prof. Alain Karma of Northeastern University, Boston, explains that the processes that take place in this region are universal - they occur in the same way in different materials and under different conditions.


The trajectory of a crack tip, showing one cycle of oscillation. The horizontal wavy line shows the trajectory of the crack tip.

Credit: Weizmann Institute of Science

"The most outstanding characteristic we discovered," says Bouchbinder, "is the nonlinear relationship between the strength of the forces and the response taking place in the material adjacent to the crack. This nonlinear region, which most studies overlook, is actually fundamentally important for understanding how cracks propagate. Most notably, it is intimately related to instabilities that can cause cracks to propagate along wavy trajectories or to split, when one would expect them to simply continue in a straight line."

By investigating the forces at play near the crack's edge, Bouchbinder and his colleagues developed a new theory - published recently in Nature Physics - that will enable researchers to understand, calculate and predict the dynamics of cracks under various physical conditions. This theory may have significant implications for materials physics research and for understanding the ways in which materials fail.

Islands of softness

Exploring a different topic, in a paper that recently appeared in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), Bouchbinder and a group of colleagues investigated the fundamental properties of the "glassy state" of matter. The glassy state can exist in a broad range of materials if their liquid state is cooled quickly enough to prevent them taking on an ordered, crystalline state. Glasses are thus disordered, or amorphous, solids and include, for example, window glasses, plastics, rubbery materials and amorphous metals.

Even though these materials are all around us and find an enormous range of applications, understanding their physical properties has been extremely challenging, owing, in large part, to the lack of tools for characterizing their intrinsically disordered structures and characterizing how these structures affect the materials' properties. Dr. Jacques Zylberg of Bouchbinder's group, Dr. Edan Lerner of the University of Amsterdam, Dr. Yohai Bar-Sinai of Harvard University (a former PhD student of Bouchbinder's), and Bouchbinder found a way to identify particularly soft regions inside glassy materials.

These "soft spots," which are identified by measuring the local thermal energy across the material, were shown to be highly susceptible to structural changes when force is applied. In other words, these soft spots play a central role when glassy materials deform and irreversibly flow under the action of external forces. The theory developed by the researchers thus brings us a step closer to understanding the mysteries of the glassy state of matter.

###

Prof. Eran Bouchbinder's research is supported by the Rothschild Caesarea Foundation; and Paul and Tina Gardner, Austin, TX.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Gizel Maimon | EurekAlert!

Further reports about: Weizmann amorphous amorphous metals cracks glassy glassy materials rubbery materials

More articles from Materials Sciences:

nachricht Nanocrystal 'factory' could revolutionize quantum dot manufacturing
18.03.2019 | North Carolina State University

nachricht Design and validation of world-class multilayered thermal emitter using machine learning
15.03.2019 | National Institute for Materials Science, Japan

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>