Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At Smallest Scale, Liquid Crystal Behavior Portends New Materials

04.05.2012
Liquid crystals, the state of matter that makes possible the flat screen technology now commonly used in televisions and computers, may have some new technological tricks in store.

Writing yesterday (May 3, 2012) in the journal Nature, an international team of researchers led by University of Wisconsin-Madison Professor of Chemical and Biological Engineering Juan J. de Pablo reports the results of a computational study that shows liquid crystals, manipulated at the smallest scale, can unexpectedly induce the molecules they interact with to self-organize in ways that could lead to entirely new classes of materials with new properties.

"From an applied perspective, once we get to very small scales, it becomes incredibly difficult to pattern the structure of materials. But here we show it is possible to use liquid crystals to spontaneously create nanoscale morphologies we didn’t know existed," says de Pablo of computer simulations that portray liquid crystals self-organizing at the molecular scale in ways that could lead to remarkable new materials with scores of technological applications.

As their name implies, liquid crystals exhibit the order of a solid crystal but flow like a liquid. Used in combination with polarizers, optical filters and electric fields, liquid crystals underlie the pixels that make sharp pictures on thin computer or television displays. Liquid crystal displays alone are a multibillion dollar industry. The technology has also been used to make ultrasensitive thermometers and has even been deployed in lasers, among other applications.

The new study modeled the behavior of thousands of rod-shaped liquid crystal molecules packed into nano-sized liquid droplets. It showed that the confined molecules self organize as the droplets are cooled. "At elevated temperatures, the droplets are disordered and the liquid is isotropic," de Pablo explains. "As you cool them down, they become ordered and form a liquid crystal phase. The liquid crystallinity within the droplets, surprisingly, induces water and other molecules at the interface of the droplets, known as surfactants, to organize into ordered nanodomains. This is a behavior that was not known."

In the absence of a liquid crystal, the molecules at the interface of the droplet adopt a homogeneous distribution. In the presence of a liquid crystal, however, they form an ordered nanostructure. "You have two things going on at the same time: confinement of the liquid crystals and an interplay of their structure with the interface of the droplet," notes de Pablo. "As you lower the temperature the liquid crystal starts to become organized and imprints that order into the surfactant itself, causing it to self assemble."

It was well known that interfaces influence the order or morphology of liquid crystals. The new study shows the opposite to be true as well.

"Now you can think of forming these ordered nanophases, controlling them through droplet size or surfactant concentration, and then decorating them to build up structures and create new classes of materials," says de Pablo.

As an example, de Pablo suggested that surfactants coupled to DNA molecules could be added to the surface of a liquid crystal droplets, which could then assemble through the hybridization of DNA. Such nanoscale engineering, he notes, could also form the basis for liquid crystal based detection of toxins, biological molecules, or viruses. A virus or protein binding to the droplet would change the way the surfactants and the liquid crystals within the droplet are organized, triggering an optical signal. Such a technology would have important uses in biosecurity, health care and biology research settings.

The new study was supported by the U.S. Department of Energy (DOE) through the Office of Basic Energy Sciences, and the U.S. National Science Foundation. In addition to de Pablo, authors of the new report include former postdoctoral fellows J.A. Moreno-Razo and E.J. Sambriski, now at the Autonomous Metropolitan University of Mexico and Delaware Valley College, respectively; Nicholas L. Abbott, of UW-Madison; and J.P. Hernández-Ortiz of the National University of Colombia.

-- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Juan de Pablo | Newswise Science News
Further information:
http://www.wisc.edu

Further reports about: DNA DNA molecule Energy Science Liquid Science TV computer simulation liquid crystal

More articles from Materials Sciences:

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

nachricht Researchers develop method to transfer entire 2D circuits to any smooth surface
07.12.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>