Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists found and studied complex types of defects in the droplets of liquid crystals


A team of scientists from Kirensky Institute of Physics of the Siberian Branch of Russian Academy of Science and Siberian Federal University (SFU) together with Russian and foreign colleagues studied the droplets of a cholesteric liquid crystal that contained a twisted defect loop. The results of the study were published in Scientific Reports journal.

Liquid crystals (LCs) are chemical substances that enter mesophase (the state between solid matter and liquid) within a certain range of temperatures. Liquid crystals combine two opposite properties: they have fluidity which is typical for liquids and anisotropy of physical properties (i.e. difference in properties depending on direction) which is characteristic of solid crystals.

Droplets of a cholesteric liquid crystal as viewed through a polarizing microscope.

Courtesy of Mikhail Krakhalev

These peculiarities are explained by orientational order of long molecular axes. As a result of this the molecules an LC consists of remain relatively mobile on the one hand, but on the other hand are oriented in a certain way determining anisotropy of properties. Molecules may have different orientation, and moreover, it may change under the influence of an electric field. That is why LCs are widely used in electrical optic devices, such as display screens.

The team worked with liquid crystals that are called cholesterics or chiral nematics. Each molecule of a liquid crystal has several rotation axes. In orientation structures a predominant direction of long molecular axes is called a director. In case of cholesterics the director forms a twisted helical structure. It means that the directions of long molecular axes (and therefore their dipole moment) are turned against each other at a certain angle, and their ends trace out a spiral line (a helix) around the axis of the helicoid.

The peculiar orientation of LC molecules leads to spatial modulation of a cholesteric's refraction index, i.e. it changes harmonically. The light moving through such a structure diffracts. The feature of light propagation through a cholesteric LC is determined by the parameters of the helical orientation structure that depend on the properties of the liquid crystal and the nature of its interaction with the environment.

The scientists studied the structure of a cholesteric LC in droplets that were tens of microns in size and had perpendicular directors at the boundary with polymer. It turned out, that the helical structure in various parts of droplets had different helix pitch, i.e. the distances at which the director made a complete turn.

"We've studied the structure formed in the droplets of a cholesteric LC in detail, and showed how the droplets look at different aspect directions and droplet sizes using an optical microscope. We've also studied the influence of an electric field on the periodicity structure and the shape of linear defect," said Mikhail Krakhalev, a co-author of the work, a candidate of physical and mathematical sciences, senior scientific associate of Kirensky Institute of Physics, and the dean of the Chair of General Physics at the Institute of Engineering Physics and Radio Electronics, SFU.

The scientists proved that a defect shaped as a twisted double helix is formed in cholesteric droplets. The authors also studied the optic textures of such structures that could be observed in an optical microscope. Given that the structures formed in cholesteric droplets are quite complex, respective optic textures are determined by a bigger number of factors.

"We've studied and described the correlation between the optical texture of the droplets and their size and the aspect directions. The described structures may help identify similar configurations in other systems, and the approach suggested by us may be used to analyze complex orientation structures," concluded Mikhail Krakhalev.


The work was a collaboration of scientists representing Kirensky Institute of Physics of the Siberian Branch of Russian Academy of Science, Lomonosov Moscow State University, and National Cheng Kung University (Taiwan).

Media Contact

Yaroslava Zhigalova


Yaroslava Zhigalova | EurekAlert!

More articles from Materials Sciences:

nachricht A materials scientist’s dream come true
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>