Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report new thermoelectric material with high power factors

15.11.2016

Material created using very high heat yielded record power output density

With energy conservation expected to play a growing role in managing global demand, materials and methods that make better use of existing sources of energy have become increasingly important.


SEM images of the material hot-pressed at a) 1123 K, b)1173 K, c) 1273 K, and d)1373 K.

Credit: University of Houston

Researchers reported this week in the Proceedings of the National Academy of Sciences that they have demonstrated a step forward in converting waste heat - from industrial smokestacks, power generating plants or even automobile tailpipes - into electricity.

The work, using a thermoelectric compound composed of niobium, titanium, iron and antimony, succeeded in raising the material's power output density dramatically by using a very hot pressing temperature - up to 1373 Kelvin, or about 2,000 degrees Fahrenheit - to create the material.

"The majority of industrial energy input is lost as waste heat," the researchers wrote. "Converting some of the waste heat into useful electrical power will lead to the reduction of fossil fuel consumption and CO2 emission."

Thermoelectric materials produce electricity by exploiting the flow of heat current from a warmer area to a cooler area, and their efficiency is calculated as the measure of how well the material converts heat - often waste heat generated by power plants or other industrial processes - into power. For example, a material that takes in 100 watts of heat and produces 10 watts of electricity has an efficiency rate of 10 percent.

That's the traditional way of considering thermoelectric materials, said Zhifeng Ren, MD Anderson Professor of Physics at the University of Houston and lead author of the paper. But having a relatively high conversion efficiency doesn't guarantee a high power output, which measures the amount of power produced by the material rather than the rate of the conversion.

Because waste heat is an abundant - and free - source of fuel, the conversion rate is less important than the total amount of power that can be produced, said Ren, who is also a principal investigator at the Texas Center for Superconductivity at UH. "In the past, that has not been emphasized."

In addition to Ren, researchers involved in the project include Ran He, Jun Mao, Qing Jie, Jing Shuai, Hee Seok Kim, Yuan Liu and Paul C.W. Chu, all of UH; Daniel Kraemer, Lingping Zeng and Gang Chen of the Massachusetts Institute of Technology; Yucheng Lan of Morgan State University, and Chunhua Li and David Broido of Boston College.

The researchers tweaked a compound made up of niobium, iron and antimony, replacing between 4 and 5 percent of the niobium with titanium. Processing the new compound at a variety of high temperatures suggested that a very high temperature - 1373 Kelvin - resulted in a material with an unusually high power factor.

"For most thermoelectric materials, a power factor of 40 is good," Ren said. "Many have a power factor of 20 or 30."

The new material has a power factor of 106 at room temperature, and researchers were able to demonstrate an output power density of 22 watts per square centimeter, far higher than the 5 to 6 watts typically produced, he said.

"This aspect of thermoelectrics needs to be emphasized," he said. "You can't just look at the efficiency. You have to look also at the power factor and power output."

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events 

Jeannie Kever | EurekAlert!

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>