Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report new thermoelectric material with high power factors

15.11.2016

Material created using very high heat yielded record power output density

With energy conservation expected to play a growing role in managing global demand, materials and methods that make better use of existing sources of energy have become increasingly important.


SEM images of the material hot-pressed at a) 1123 K, b)1173 K, c) 1273 K, and d)1373 K.

Credit: University of Houston

Researchers reported this week in the Proceedings of the National Academy of Sciences that they have demonstrated a step forward in converting waste heat - from industrial smokestacks, power generating plants or even automobile tailpipes - into electricity.

The work, using a thermoelectric compound composed of niobium, titanium, iron and antimony, succeeded in raising the material's power output density dramatically by using a very hot pressing temperature - up to 1373 Kelvin, or about 2,000 degrees Fahrenheit - to create the material.

"The majority of industrial energy input is lost as waste heat," the researchers wrote. "Converting some of the waste heat into useful electrical power will lead to the reduction of fossil fuel consumption and CO2 emission."

Thermoelectric materials produce electricity by exploiting the flow of heat current from a warmer area to a cooler area, and their efficiency is calculated as the measure of how well the material converts heat - often waste heat generated by power plants or other industrial processes - into power. For example, a material that takes in 100 watts of heat and produces 10 watts of electricity has an efficiency rate of 10 percent.

That's the traditional way of considering thermoelectric materials, said Zhifeng Ren, MD Anderson Professor of Physics at the University of Houston and lead author of the paper. But having a relatively high conversion efficiency doesn't guarantee a high power output, which measures the amount of power produced by the material rather than the rate of the conversion.

Because waste heat is an abundant - and free - source of fuel, the conversion rate is less important than the total amount of power that can be produced, said Ren, who is also a principal investigator at the Texas Center for Superconductivity at UH. "In the past, that has not been emphasized."

In addition to Ren, researchers involved in the project include Ran He, Jun Mao, Qing Jie, Jing Shuai, Hee Seok Kim, Yuan Liu and Paul C.W. Chu, all of UH; Daniel Kraemer, Lingping Zeng and Gang Chen of the Massachusetts Institute of Technology; Yucheng Lan of Morgan State University, and Chunhua Li and David Broido of Boston College.

The researchers tweaked a compound made up of niobium, iron and antimony, replacing between 4 and 5 percent of the niobium with titanium. Processing the new compound at a variety of high temperatures suggested that a very high temperature - 1373 Kelvin - resulted in a material with an unusually high power factor.

"For most thermoelectric materials, a power factor of 40 is good," Ren said. "Many have a power factor of 20 or 30."

The new material has a power factor of 106 at room temperature, and researchers were able to demonstrate an output power density of 22 watts per square centimeter, far higher than the 5 to 6 watts typically produced, he said.

"This aspect of thermoelectrics needs to be emphasized," he said. "You can't just look at the efficiency. You have to look also at the power factor and power output."

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events 

Jeannie Kever | EurekAlert!

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>