Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding of actuator properties of carbon nanotubes bring micro machines closer

23.11.2007
Development of measurement set-up for electromechanical analysis of bucky paper actuators

Imagine machines smaller than microscopic in size working around us, in us and for us. Imagine them seeking out diseases, cleaning the environment and making the world a better place. Just as a car is a combination of a whole series of separate items, engine, suspension, wheels, electronics, chassis, etc, nanomachines too need to be constructed from a range of components.

One such component is a type of actuator to open and close things, to absorb shock, lift or lower loads and provide other forms of linear movement. It is known that forms of carbon nanotubes can function as actuators, but thanks to some new research we have a better understanding of what they do and how well they do it.

A Fraunhofer Techologie-Entwicklungsgruppe based research team have published a paper looking at an actuation measurement set-up constructed to perform electromechanical characterization of bucky papers. Bucky papers are sheets of carbon nanotubes obtained via filtration process. The research paper has been published in a special edition of the open access journal, AZoJono*. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The researchers, Urszula Kosidlo, Daniel Georg Weis, Klaus Hying, Mohammad H. Haque and Ivica Kolaric, constructed a special measurement device and performed their tests in liquid electrolyte to allow the build up of the electrochemical double-layer, which is necessary for the actuation of carbon nanotubes. The measurements are performed with focus on the out-of-plane strain and stress generated by the structure of interest.

The device they designed was found to be useful for characterising electromechanical properties of bucky paper. Using their device, they were able to determine the dependence on applied voltage, electrolyte used as well as performance under additional load applied on the sample. They also concluded that to gain a better understanding of the actuation mechanism of bucky paper, galvanodynamic tests, current/charge controlled should be performed. The device that was used in this investigation is also suitable for this application.

The article is available to view in full in AZoJono at http://www.azonano.com/Details.asp?ArticleID=2043

Ian Birkby | EurekAlert!
Further information:
http://www.azonetwork.com
http://www.azonano.com/Details.asp?ArticleID=2043

More articles from Materials Sciences:

nachricht High-efficiency thermoelectric materials: New insights into tin selenide
25.04.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Scientists develop low-cost energy-efficient materials
24.04.2019 | National University of Science and Technology MISIS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>