Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cerium oxide nanotubes get noticed

29.03.2006


Chemists and materials scientists often study "nanotubes" -- capsule-shaped molecules only a few billionths of a meter (nanometers) in width. In nanotube form, many materials take on useful, unique properties, such as physical strength and excellent conductivity. Carbon nanotubes are the most widely investigated variety. Now, in pioneering research, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have created and investigated the properties of nanotubes made of a different, yet equally interesting material: cerium oxide.



"Cerium oxide nanotubes have potential applications as catalysts in vehicle emission-control systems and even fuel cells," says Brookhaven chemist Wei-Qiang Han, the lead scientist involved in the work. "But until very recently, they haven’t been studied."

Han and his colleagues are in the midst of ongoing research into the structure and properties of cerium oxide nanotubes. As part of this, they have devised a method to synthesize cerium oxide nanotubes of high quality. First, they allow the compounds cerium nitrate and ammonia hydroxide to chemically react. Initially, this reaction forms "one-dimensional" nanostructures, such as rods and sheets, made of the intermediate product cerium hydroxide. The intermediate product is then quickly cooled to zero degrees Celsius, which freezes those structures into place. By letting the chemical reaction proceed over a long period of time, a process called "aging," the hydrogen is eventually removed from the intermediate product and a large quantity of the desired end product -- cerium oxide nanotubes -- is formed.


Han will explain this synthesis method at the American Chemical Society National Meeting in Atlanta, Georgia. His talk will take place at 3:00 p.m. on Tuesday, March 28, 2006, in Room B403 of the Georgia World Congress Center.

During his talk, Han will also discuss his group’s recent study -- how cerium oxide nanotubes release oxygen ions when immersed in a low-oxygen environment, a process that is critical to the nanotubes’ effectiveness as catalysts. To do this, the researchers have used several techniques. These include "transmission electron microscopy," a very powerful imaging technique, and two x-ray techniques, which they performed at Brookhaven’s National Synchrotron Light Source.

"We’re interested in studying oxygen-atom vacancies in cerium oxide nanotubes because, when combined with their other surface features, these vacancies may make them more functional and effective in the applications mentioned," Han said.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>