Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecule Heralds Breakthrough in Electronic Plastics

13.04.2004


An organic solution of Oligotron mixed with chemicals that help the material set under ultraviolet light (top, in vial); a "mask," made by a laser printer on an overhead transparency, which was used to control the exposure of light (middle); and a photoprinted “NSF” image after exposure to ultraviolet light and rinsing (bottom).

Credit: Photo by Brian J. Elliott, TDA Research, Inc.


New material could mean easier manufacture of paper-thin TVs and "smart" cloth

Researchers have developed a new plastic that conducts electricity, may be simpler to manufacture than industry counterparts and easily accommodates chemical attachments to create new materials.

Developed by TDA Research in Wheat Ridge, Colo., Oligotron polymers are made of tiny bits of material that possess a conducting center and two, non-conducting end pieces. The end pieces allow the plastic bits to dissolve in solvents and accommodate specialized molecules.



For decades, researchers have been trying to craft electronics that use plastics instead of metal to transmit currents. In addition to the potential savings in weight and cost, conducting polymers could be manufactured in a variety of convenient shapes, yielding such innovations as fabrics that transmit data and incredibly thin video displays.

However, because conducting polymers initially were not soluble in liquids, they could not be manufactured as easily as could their common counterparts used in soda bottles and synthetic fibers. Recent discoveries resulted in a water-soluble conducting polymer called PEDOT (polyethylenedioxythiophene), yet water can corrode device parts during manufacturing and shorten the lifespan of the end product.

Oligotron, developed with National Science Foundation (NSF) Small Business Innovation Research (SBIR) support, contains a PEDOT center, but it is soluble in non-corrosive chemicals and can attach new compounds to its end pieces, adding a variety of functions. For example, researchers have proposed end pieces that convert solar energy into electricity, ultimately creating a novel solar cell material.

Oligotron also has special properties that allow the material to be "printed" into various device shapes. When technicians shine a pattern of ultraviolet light, such as a complex circuit image, onto a film of dissolved Oligotron, the exposed areas of plastic become "fixed" like a photograph. Flexible and lightweight, the circuit is also fully functional.

TDA researchers predict applications for the product that range from flexible television displays and smart cards to antistatic treatments and conducting fabrics.

Oligotron is a trademark of TDA Research, Inc.

Comments from the researchers:

"Through our research we discovered that by attaching molecules to the ends of the PEDOT, the chemical could easily disperse in organic solvents, something we have not seen with typical conducting polymers."– Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"When we added photo-sensitive end groups to the Oligotron we created a material that could be printed using an ultraviolet light source. Using a patterned light source resulted in a patterned image that could conduct electricity." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"We began this research with the goal of developing easier methods to manufacture electronic devices with conducting polymers. We wanted to solve the problems related to the difficulties of dispersing conducting polymers in non-corrosive, organic solvents and create an easy method to print detailed features." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"We were surprised to discover that the Oligotron could conduct electricity almost as well as the completely non-dispersible, pure form of the PEDOT polymer." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"The reactive chemical groups on the ends of the Oligotron molecules will allow other scientists to synthesize new molecules, building additional functionality onto the molecule. These molecules will allow chemists to use their creativity to invent new materials with conducting polymers." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

NSF comments regarding the discovery:

"Flat-panel displays are probably the largest market for organic electronic materials. The development of soluble polymers could have a large impact on the cost and ease of processing these displays." – Winslow Sargeant, the NSF program officer who oversees TDA’s award.

"This is a significant breakthrough: a soluble and highly conductive multi-block copolymer, with its ability to be photo-crosslinked, could lead to a printable conducting polymer with a high conductivity."

Josh Chamot | NSF
Further information:
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=73

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>