Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecule Heralds Breakthrough in Electronic Plastics

13.04.2004


An organic solution of Oligotron mixed with chemicals that help the material set under ultraviolet light (top, in vial); a "mask," made by a laser printer on an overhead transparency, which was used to control the exposure of light (middle); and a photoprinted “NSF” image after exposure to ultraviolet light and rinsing (bottom).

Credit: Photo by Brian J. Elliott, TDA Research, Inc.


New material could mean easier manufacture of paper-thin TVs and "smart" cloth

Researchers have developed a new plastic that conducts electricity, may be simpler to manufacture than industry counterparts and easily accommodates chemical attachments to create new materials.

Developed by TDA Research in Wheat Ridge, Colo., Oligotron polymers are made of tiny bits of material that possess a conducting center and two, non-conducting end pieces. The end pieces allow the plastic bits to dissolve in solvents and accommodate specialized molecules.



For decades, researchers have been trying to craft electronics that use plastics instead of metal to transmit currents. In addition to the potential savings in weight and cost, conducting polymers could be manufactured in a variety of convenient shapes, yielding such innovations as fabrics that transmit data and incredibly thin video displays.

However, because conducting polymers initially were not soluble in liquids, they could not be manufactured as easily as could their common counterparts used in soda bottles and synthetic fibers. Recent discoveries resulted in a water-soluble conducting polymer called PEDOT (polyethylenedioxythiophene), yet water can corrode device parts during manufacturing and shorten the lifespan of the end product.

Oligotron, developed with National Science Foundation (NSF) Small Business Innovation Research (SBIR) support, contains a PEDOT center, but it is soluble in non-corrosive chemicals and can attach new compounds to its end pieces, adding a variety of functions. For example, researchers have proposed end pieces that convert solar energy into electricity, ultimately creating a novel solar cell material.

Oligotron also has special properties that allow the material to be "printed" into various device shapes. When technicians shine a pattern of ultraviolet light, such as a complex circuit image, onto a film of dissolved Oligotron, the exposed areas of plastic become "fixed" like a photograph. Flexible and lightweight, the circuit is also fully functional.

TDA researchers predict applications for the product that range from flexible television displays and smart cards to antistatic treatments and conducting fabrics.

Oligotron is a trademark of TDA Research, Inc.

Comments from the researchers:

"Through our research we discovered that by attaching molecules to the ends of the PEDOT, the chemical could easily disperse in organic solvents, something we have not seen with typical conducting polymers."– Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"When we added photo-sensitive end groups to the Oligotron we created a material that could be printed using an ultraviolet light source. Using a patterned light source resulted in a patterned image that could conduct electricity." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"We began this research with the goal of developing easier methods to manufacture electronic devices with conducting polymers. We wanted to solve the problems related to the difficulties of dispersing conducting polymers in non-corrosive, organic solvents and create an easy method to print detailed features." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"We were surprised to discover that the Oligotron could conduct electricity almost as well as the completely non-dispersible, pure form of the PEDOT polymer." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

"The reactive chemical groups on the ends of the Oligotron molecules will allow other scientists to synthesize new molecules, building additional functionality onto the molecule. These molecules will allow chemists to use their creativity to invent new materials with conducting polymers." – Brian Elliott, Senior Chemical Engineer, TDA Research, Inc.

NSF comments regarding the discovery:

"Flat-panel displays are probably the largest market for organic electronic materials. The development of soluble polymers could have a large impact on the cost and ease of processing these displays." – Winslow Sargeant, the NSF program officer who oversees TDA’s award.

"This is a significant breakthrough: a soluble and highly conductive multi-block copolymer, with its ability to be photo-crosslinked, could lead to a printable conducting polymer with a high conductivity."

Josh Chamot | NSF
Further information:
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=73

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>