Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University announces ’one-step’ method to make polymer nanowires

31.03.2004


Increases versatility of conducting polymers





A powerful one-step, "chain growth" method should make it easier to design and synthesize a variety of highly conductive polymers for different research and commercial applications, according to a presentation by the method’s developer, Carnegie Mellon University chemist Richard McCullough. McCullough, dean of the Mellon College of Science and professor of chemistry, is reporting his research Tuesday, March 30, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. (POLY 360, Plaza B).

McCullough has harnessed the chain-growth method to increase the versatility of the conducting polymers, called regioregular polythiophenes. This new method allows scientists to "cap" each conducting polymer with chemical groups that link to other structural polymers (Figure 1). With this research, funded by the National Science Foundation, researchers can form highly conductive nanowire sheets within polymer blocks (Figure 2) or create a plethora of new conducting polymers.


Variations in the chemical "cap" also allow regioregular polythiophene strands to adhere directly to metal, silicon or other industrially important templates used in devices like transistors (Figure 3). They effectively self-assemble into a well-ordered, highly conducting nanoscale layers.

"The chain-growth method eliminates six production steps to create block co-polymer nanowires that conduct electricity a million times better than the all other conducting block copolymers," said McCullough.

Conducting polymers are remarkable materials that possess the electrical properties of metals yet retain the mechanical properties of polymers. In 1992 McCullough was the first to report the synthesis of regioregular polythiophenes, which in 2002 became the basis of a Carnegie Mellon spinout company, Plextronics, Inc.

The current research was conducted, in large part, by postdoctoral research fellows Malika Jeffries-El and Genevieve Sauve.

Block copolymers of regioregular polythiophenes conduct electricity so well due to their uniform composition and neat alignment into nanowires. Impurities and random orientation of polymer strands created by other methods vastly reduces their ability to conduct electricity, according to McCullough.

"A good analogy is a water hose. A bent hose transports water poorly, whereas a straight hose conducts water much more effectively. Likewise, irregularly shaped, disorganized polymers are poor conductors of electricity, whereas straight, stackable regioregular polythiophenes are excellent electrical conductors," said McCullough.

Regioregular polythiophenes have a wide range of potential applications, such as dissipating static electrical charges that build up on coated floors or use in disposable devices called radio frequency identification tags. (See www.plextronics.com for additional applications).

The superior conducting performance of regioregular polythiophenes is captured in their structure. Each polymer unit is composed of a chemical ring (thiophene) with a chemical branch on one side. Units are attached head to tail, so that all of the branches line up in one direction, much like feathers (Figure 4). The head-to-tail structure effectively straightens polythiophenes into rods that can be stacked one atop another.

To make a regioregular polythiophene polymer conductive, the scientists incorporate a pinch of a reactive additive to the polymer. This step removes some electrons from the forming polymer, thereby freeing the remaining electrons to move up and down the final polymer.

By attaching normal plastics to the polythiophene backbone, McCullough’s team can create nanowire stacks with versatile properties, such as softness and solubility in different fluids used in industrial manufacturing. Because their properties can be varied, regioregular conducting polymers have the widest range of commercial applications compared with any other conducting polymer, he said.


The Mellon College of Science at Carnegie Mellon University maintains innovative research and educational programs in biological sciences, chemistry, physics, mathematics and several interdisciplinary areas. For more information, visit http://www.cmu.edu/mcs.

Plextronics takes advantage of the vast commercial opportunities generated by these breakthroughs and has designed a new generation of matrials that enable broad market potential. For more information about Plextronics, Inc., please contact Jennifer Honig at jhonig@plextronics.com or 412-977-7703.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Materials Sciences:

nachricht Carnegie Mellon researchers create soft, flexible materials with enhanced properties
24.05.2019 | Carnegie Mellon University

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>