Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nanowire could be next big diagnostic tool for doctors

17.12.2003


A tiny nanowire sensor — smaller than the width of a human hair, 1,000 times more sensitive than conventional DNA tests, and capable of producing results in minutes rather than days or weeks — could pave the way for faster, more accurate medical diagnostic tests for countless conditions and may ultimately save lives by allowing earlier disease detection and intervention, Harvard scientists say.



In preliminary laboratory studies demonstrating the capability of the new sensor, the researchers showed that it has the potential to detect the gene for cystic fibrosis more efficiently than conventional tests for the disease. CF is the most common fatal genetic disease among people of European origin.

One of a growing number of promising diagnostic tools that are based on nanotechnology, the silicon sensor represents the first example of direct electrical detection of DNA using nanotechnology, according to the researchers. The sensor and the detection of the CF gene will be described in the Jan. 14 issue of the journal Nano Letters, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


"This tiny sensor could represent a new future for medical diagnostics," says study leader Charles M. Lieber, Ph.D., a professor of chemistry at Harvard and one of the leading researchers in nanotechnology.

"What one could imagine," says Lieber, "is to go into your doctor’s office, give a drop of blood from a pin prick on your finger, and within minutes, find out whether you have a particular virus, a genetic disease, or your risk for different diseases or drug interactions."

With its high sensitivity, the sensor could detect diseases never before possible with conventional tests, he says. And if all goes well in future studies, Lieber predicts that an array of sensors can ultimately be configured to a handheld PDA-type device or small computer, allowing almost instant test results during a doctor’s visit or possibly even at home by a patient. It could potentially be used to screen for disease markers in any bodily fluid, including tears, urine and saliva, he says.

The sensor also shows promise for early detection of bioterrorism threats such as viruses, the researcher says.

An experimental version of the technology consists of a thin plate about the size of a small business card containing the tiny nanowire sensor. A working prototype device suitable for testing of human blood or other body fluids could be five years away, Lieber estimates.

To demonstrate the effectiveness of the sensor device, the researchers grafted nucleic acids, the building blocks of DNA, to a silicon nanowire. The nucleic acids were specifically designed to recognize a particular mutation site in the cystic fibrosis gene that is responsible for most fatal cases of the genetic disease. The researchers then exposed the nanowire to fragments of the cystic fibrosis gene, some with the lethal mutation and some without it.

The researchers found that they could successfully distinguish between the two types of gene fragments, even down to extremely low levels that would have been missed by conventional DNA sensors, according to Lieber.

Unlike conventional DNA detection methods that require a complex procedure called PCR amplification to view the results, the nanowire sensor does not need such sophisticated and expensive techniques, which could ultimately speed up genetic testing while reducing costs.

Lieber recently helped start a company, NanoSys, Inc., that is now developing nanowire technology and other nanotechnology products. His associate in this study is Jong-in Hahm, Ph.D., a former postdoctoral fellow in his research group who is currently an assistant professor at Penn State University.

Funding for the research was provided by the Defense Advanced Research Projects Agency, National Cancer Institute and Ellison Medical Foundation.


The online version of the research paper cited above was initially published Dec. 9 on the journal’s Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>