Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact through silver particles in ink

06.05.2008
Conductor paths in sensor systems have to be correctly ‘wired’. Now, instead of using obtrusive connecting wires, researchers print the conductor paths. The connections thus produced are thinner, and the sensor delivers more accurate measurements.

Modern cars are full of sensors. The optimum quantity of air in the intake tract of a combustion engine is regulated by thermoelectric flow sensors, for instance.

They measure which quantities of a gas or a liquid flow in a particular direction. Another application for sensors like these is in medicine, where they regulate tiny quantities of drugs.

These thermoelectric sensors depend for their correct function on the right contact: The measuring sensors, consisting of a silicon wafer and a membrane, are embedded in a printed circuit board. So that the necessary current can flow between the contacts of the sensor and the printed circuit board, a conductor path has to be created – experts speak of ‘contacting’. Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen are working on a special technique: “Up to now, contacting was usually done with wire bonds – thin wires, that is,” explains IFAM project manager Christian Werner. “But wire bonds stick out, and thus impair the flow behavior of the gases and liquids.

That can affect high-precision measurements.” The researchers have therefore developed a new technique: INKtelligent printing®. What is different about this technique is that the researchers print the conductor paths instead of wiring them. This is basically a contactless aerosol printing method. The secret lies in the ink: “The suspension contains nano silver particles in a special solvent,” says Werner. “This enables us to print extremely thin-layered conductor paths.” Subsequent thermal treatment activates the electrical conductivity of the paths.

The researchers have tried and tested these conductor paths together with colleagues from the Institute for Microsensors, -actuators and -systems IMSAS in Bremen. Altogether, the engineers have solved one of the main problems of thermoelectric sensors. In contrast to wire bonds, which have an overall height of 1 to 1.5 millimeters, the printed conductor paths are a mere 2 to 3 micrometers high, or almost five hundred times thinner than wire bonds.

This enables the sensors to make far more accurate measurements. Fraunhofer researchers will be presenting the novel technology platform INKtelligent printing® at the Sensor and Test fair in Nuremberg from May 6 to 8 (Hall 7, Stand 331).

| alfa
Further information:
http://www.zv.fraunhofer.de

More articles from Materials Sciences:

nachricht Bio-circuitry mimics synapses and neurons in a step toward sensory computing
18.10.2019 | DOE/Oak Ridge National Laboratory

nachricht Chains of atoms move at lightning speed inside metals
17.10.2019 | Linköping University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>