Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of catalysts for energy conversion

08.05.2019

Numerous chemical reactions relevant for the energy revolution are highly complex and result in considerable energy losses. This is the reason why energy conversion and storage systems or fuel cells are not yet widely used in commercial applications. Researchers at Ruhr-Universität Bochum (RUB) and Max-Planck-Institut für Eisenforschung in Düsseldorf are now reporting on a new class of catalysts that is theoretically suitable for universal use. These so-called high entropy alloys are formed by mixing close to equal proportions of five or more elements. They might finally push the boundaries of traditional catalysts that have been unsurpassable for decades. The research team describes their uncommon electrocatalytic working principles as well as their potential for systematic application in the journal "ACS Energy Letters" from 17. April 2019.

Material libraries for electrocatalysis research


Michael Meischein in front of the sputter system in which nanoparticles are fabricated by co-deposition into an ionic liquid.

Credit: RUB, Marquard

Usage Restrictions: The image may only be used for reporting about the Ruhr-Universitaet Bochum in the context of the press release "New class of catalysts for energy conversion" published in May 2019.

The material class of high entropy alloys features physical properties that have considerable potential for numerous applications. In oxygen reduction, they have already reached the activity of a platinum catalyst.

"At our department, we have unique methods at our disposal to manufacture these complex materials from five source elements in different compositions in form of thin film or nanoparticle libraries," explains Professor Alfred Ludwig from the Chair of Materials for Microtechnology at RUB.

The atoms of the source elements blend in plasma and form nanoparticles in a substrate of ionic liquid. If the nanoparticles are located in the vicinity of the respective atom source, the percentage of atoms from that source is higher in the respective particle. "Very limited research has as yet been conducted into the usage of such materials in electrocatalysis," says Ludwig.

Manipulating individual reaction stages

This is expected to change in the near future. The researchers have postulated that the unique interactions of different neighbouring elements might pave the way for replacing noble metals with equivalent materials.

"Our latest research has unearthed other unique characteristics, for example the fact that this class may also affect the interdependencies among individual reaction steps," says Tobias Löffler, PhD researcher at the Center for Electrochemical Sciences at the RUB Chair of Analytical Chemistry. "Thus, it would contribute to solving one of the major problems of many energy conversion reactions, namely otherwise unavoidable great energy losses. The theoretical possibilities seem almost too good to be true."

Foundation for ongoing research

In order to promote rapid progress, the team from Bochum and Düsseldorf has described its initial findings with the aim of interpreting first characteristic observations, outlining the challenges, and putting forward first guidelines - all of which are conducive to advancing research.

"The complexity of the alloy is reflected in the research results, and many analyses will be necessary before one can assess its actual potential. Still, none of the findings to date precludes a breakthrough," supposes Professor Wolfgang Schuhmann, Chair of Analytical Chemistry at RUB.

Visualisation in 3D

The characterisation of catalyst nanoparticles, too, is conducive to research. "In order to gain an indication of how, exactly, the activity is affected by the structure, high-resolution visualisation of the catalyst surface on the atomic level is a helpful tool, preferably in 3D," says Professor Christina Scheu from Max-Planck-Institut für Eisenforschung in Düsseldorf. Researchers have already demonstrated that this is an attainable goal - if not yet applied to this class of catalysts.

The question if such catalysts will facilitate the transition to sustainable energy management remains to be answered. "With our studies, we intend to lay the foundation for ongoing research in this field," conclude the authors.

###

Funding

The research was funded by the Federal Ministry of Education and Research in the Nemezu project (03SF0497B), by the German Research Foundation in the projects LU1175/23-1 and SCHE634/21-1, and through a Chemiefonds Fellowship by Fonds der chemischen Industrie.

Original publication

Tobias Löffler, Alan Savan, Alba Garzón-Manjón, Michael Meischein, Christina Scheu, Alfred Ludwig, Wolfgang Schuhmann: Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles, in: ACS Energy Letters, 2019, DOI: 10.1021/acsenergylett.9b00531

Press contact

Prof. Dr. Wolfgang Schuhmann
Analytical Chemistry
Center for Electrochemical Sciences
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 26200
Email: wolfgang.schuhmann@rub.de

Prof. Dr. Alfred Ludwig
Materials for Microtechnology
Institute for Materials
Department of Mechanical Engineering
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 27492
Email: alfred.ludwig@rub.de

Prof. Dr. Christina Scheu
Nanoanalytics and Interfaces
Max-Planck-Institut für Eisenforschung GmbH
Germany
Phone: +49 211 6792720
Email: scheu@mpie.de

Media Contact

Alfred Ludwig
alfred.ludwig@rub.de
49-234-322-7492

 @ruhrunibochum

http://www.ruhr-uni-bochum.de 

Alfred Ludwig | EurekAlert!
Further information:
https://news.rub.de/english/press-releases/2019-05-06-material-research-new-class-catalysts-energy-conversion
http://dx.doi.org/10.1021/acsenergylett.9b00531

Further reports about: 3D Analytical Chemistry Eisenforschung Microtechnology Nanoparticles catalyst

More articles from Materials Sciences:

nachricht A remote control for neurons
04.06.2020 | College of Engineering, Carnegie Mellon University

nachricht Smart textiles made possible by flexible transmission lines
03.06.2020 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>