Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal in the heart is non-hazardous to health

18.02.2014
Materials Scientists at the University of Jena examine implants made of nickel-titanium alloy in a long-term study

A trousers button, a coin or a watch can be dangerous for people with a nickel allergy. Approximately 1 in 10 Germans is allergic to the metal. “This raises the question of the safety of medical implants containing nickel,” explains Professor Dr. Markus Rettenmayr of the Friedrich-Schiller-Universität Jena.


An occluder made of a nickel-titanium alloy. These medical implants are used for the correction of a defective cardiac septum.

Photo: Jan-Peter Kasper/FSU


The Jena materials scientist Dr.-Ing. Andreas Undisz.

Photo: Jan-Peter Kasper/FSU

Nickel-titanium alloys are increasingly used as material for cardiovascular implants in minimal invasive surgery. Once implanted, nickel-titanium alloys can release small amounts of nickel due to corrosion phenomena, the holder of the Chair of Metallic Materials explains. Our concern was that this could - in particular over a long period of time - lead to a nickel contamination in the patient’s body that possibly results in health problems.

But these concerns are essentially unfounded: The team of Jena scientists led by Professor Rettenmayr and his colleague Dr. Andreas Undisz report in the current issue of the scientific journal ‘Acta Biomaterialia‘ that the release of nickel from wires made of nickel-titanium alloys is very low, also over longer periods of time. The scientists could back up their statement in the first long-term study ever, which examined such nickel release in detail: The testing period for metal release, as requested for governmental approval of a medical implant, is only a few days. In contrast the Jena research team monitored the release of nickel over a time period of eight months.

Examination objects were fine wires from a superelastic nickel-titanium alloy that are, for example, applied in the form of occluders (these are medical implants used for the correction of a defective cardiac septum). Such occluders often consist of two tiny wire-mesh ”umbrellas”, approximately the size of a 1 Euro coin. The superelastic implant can be mechanically drawn into the shape of a thin thread, which then can be placed in a cardiac catheter. “By that means the occluders can be put into place via minimal invasive surgery,” Dr. Undisz says. Ideally the implant will stay in the patient’s body for years or decades.

Dr. Undisz and the doctoral candidate Katharina Freiberg wanted to find out what happens during this period of time with the nickel-titanium wire. They exposed samples of the wires, which underwent different mechanical and thermal pre-treatment, to highly purified water. They then examined the release of nickel according to pre-defined time intervals. “This wasn’t trivial at all”, Undisz says, “because the concentration of the released metal is often at the limit of detection.” However, in co-operation with scientists from the Institute for Clinical Chemistry and Laboratory Medicine of the Jena University Hospital the materials scientists successfully developed a reliable test routine to measure the process of the nickel release.

“Mostly in the first days and weeks, depending on the pre-treatment of the material, considerable amounts of nickel may get released,” Undisz summarizes the results. According to the materials scientist this is due to the mechanical strain of the implant during the surgery. “The deformation damages the thin layer of oxide covering the material. As a consequence the initial nickel release increases.” In the long run, however, the nickel release decreases to amounts of a few nanograms per day and is hence far below the amount of nickel that we absorb anyway through our food on a daily basis.

Original Publication:
Freiberg KE, Bremer-Streck S, Kiehntopf M, Rettenmayr M, Undisz A: Effect of thermomechanical pre-treatment on short- and long-term Ni release from biomedical NiTi, Acta Biomaterialia (2014), doi: 10.1016/j.actbio.2014.01.003
Contact:
Dr.-Ing. Andreas Undisz
Otto-Schott-Institut für Materialforschung
Friedrich Schiller University Jena
Loebdergraben 32, 07743 Jena
Germany
Phone: ++49 3641 947768
Email: andreas.undisz[at]uni-jena.de

Dr. Ute Schönfelder | Universität Jena
Further information:
http://www.uni-jena.de

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>