Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning accelerates the discovery of new materials

10.05.2016

Researchers apply adaptive-design strategy to reveal targeted properties in shape-memory alloy

Researchers recently demonstrated how an informatics-based adaptive design strategy, tightly coupled to experiments, can accelerate the discovery of new materials with targeted properties, according to a recent paper published in Nature Communications.


Feedback from experiments: augmented dataset with four new alloys.

Credit: Los Alamos National Laboratory

"What we've done is show that, starting with a relatively small data set of well-controlled experiments, it is possible to iteratively guide subsequent experiments toward finding the material with the desired target," said Turab Lookman, a physicist and materials scientist in the Physics of Condensed Matter and Complex Systems group at Los Alamos National Laboratory. Lookman is the principal investigator of the research project.

"Finding new materials has traditionally been guided by intuition and trial and error," said Lookman."But with increasing chemical complexity, the combination possibilities become too large for trial-and-error approaches to be practical."

To address this, Lookman, along with his colleagues at Los Alamos and the State Key Laboratory for Mechanical Behavior of Materials in China, employed machine learning to speed up the process. It worked. They developed a framework that uses uncertainties to iteratively guide the next experiments to be performed in search of a shape-memory alloy with very low thermal hysteresis (or dissipation). Such alloys are critical for improving fatigue life in engineering applications.

"The goal is to cut in half the time and cost of bringing materials to market," said Lookman. "What we have demonstrated is a data-driven framework built on the foundations of machine learning and design that can lead to discovering new materials with targeted properties much faster than before." The work made use of Los Alamos' high-performance supercomputing resources.

Although the Materials Genome initiative, issued by the White House Office of Science and Technology Policy in 2011, catalyzed interest in accelerated materials discovery, this study is one of the first to demonstrate how an informatics framework can actually lead to the discovery of new materials.

Much of the effort in the field has centered on generating and screening databases typically formed by running thousands of quantum mechanical calculations. However, the interplay of structural, chemical and microstructural degrees of freedom introduces enormous complexity, especially if defects, solid solutions, non-stoichiometry and multi-component compounds are involved, which the current state-of-the-art tools are not yet designed to handle. Moreover, few studies include any feedback to experiments or incorporate uncertainties.

Lookman and his colleagues focused on nickel-titanium-based shape-memory alloys, but the strategy can be used for any materials class (polymers, ceramics or nanomaterials) or target properties (e.g., dielectric response, piezoelectric coefficients and band gaps). This becomes important when experiments or calculations are costly and time-consuming. Although the work focused on the chemical exploration space, it can be readily adapted to optimize processing conditions when there are many "tuning knobs" controlling a figure of merit, as in advanced manufacturing applications. Similarly, it can be generalized to optimize multiple properties, such as, in the case of the nickel-titanium-based alloy, low dissipation as well as a transition temperature several degrees above room temperature.

###

The Laboratory Directed Research and Development (LDRD) program at Los Alamos funded the work and Los Alamos provided institutional computing resources. The researchers on the LDRD include a highly interdisciplinary team with post-docs Dezhen Xue, Prasanna Balachandran, Ghanshyam Pilania and staff scientists John Hogden, James Theiler, Jim Gubernatis, Kip Barros, Eli Ben-Naim, Quanxi Jia, Rohit Prasankumar and Turab Lookman.

The work supports the Lab's Nuclear Deterrence and Energy Security mission areas and the Information, Science, and Technology and Materials for the Future science pillars. Exploring the physics, chemistry and metallurgy of materials has been a primary focus of Los Alamos since its founding. Through the exploration of materials, Los Alamos pursues the discovery science and engineering required to establish design principles, synthesis pathways, and manufacturing processes for advanced and new materials to intentionally control functionality relevant to the Lab's national security mission.

Lookman and coauthors Dezhen Xue, Prasanna V. Balachandran, John Hogde, James Theiler, and Deqing Xue published their research in an article titled "Accelerated search for materials with targeted properties by adaptive design," which was published in the April 15 issue of Nature Communications.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Media Contact

Nancy Ambrosiano
nwa@lanl.gov
505-667-0471

 @LosAlamosNatLab

http://www.lanl.gov 

Nancy Ambrosiano | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>