Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser technology sets stage for the cost-effective production of lightweight components

08.03.2012
Fiber-reinforced plastics are the most talked-about class of materials in lightweight construction.
In mobility lightweight components can both lower fuel consumption as well as increase the vehicle's operating range. But still the market penetration of complex lightweight components is very low while their manufacturing costs are very high. To tackle this issue, the Fraunhofer Institute for Laser Technology ILT is working together with industry and research partners to develop cost-effective methods of production that will significantly increase the usability of lightweight components in mass-market applications.

Recent years have seen soaring demand for lightweight components worldwide. Typical lightweight construction materials include aluminum, high-strength steels, magnesium, titanium and, above all, fiber-reinforced plastics (FRPs). FRPs consist of an organic matrix reinforced either with carbon fibers (CFRP) or glass fibers (GFRP). The production of FRP products is currently hindered by long cycle times and low levels of automation – two factors that pose significant obstacles to mass production – and methods are now being sought to produce FRP products more efficiently. The EU project FibreChain and the InProLight project, which is funded by the German Federal Ministry of Education and Research (BMBF), have set themselves the goal of developing various integrated process chains ranging from sophisticated specialist solutions to the mass production of fiber-reinforced thermoplastic composites. Fraunhofer ILT’s primary task within the scope of these projects is to optimize methods of cutting and joining lightweight components.

Structural joining by laser beam welding

Drawing on the characteristics of the raw material, Andreas Rösner and his colleagues have developed a method of structurally joining lightweight components. These have traditionally been joined by adhesive bonding or riveting – two comparatively expensive methods that require extensive preliminary work and extended process time. Rösner has overcome these drawbacks by joining the components using a laser. In this time-efficient process, the energy is deposited directly into the joining zone. Thus, complex components consisting of several individual parts can be produced. Furthermore, the process enables the production of persistent structures, creating selective reinforcements. As an extension of this process, the joining of plastics with metal was realized in a special two-stage laser process. Rösner first structures the metallic component with a high-brilliance laser beam, and in a second step he heats it by using a diode laser. The softened plastic then penetrates into the structured metal which leads to an excellent mechanical clawing between the joining parts.

Cutting without damaging the edges
In addition to joining FRP components and producing plastic-metal connections, another step that appears multiple times in the process chain is cutting. As well as cutting the raw material itself, it is also necessary to trim the components and cut out the required holes and sections. One of the key goals of the cutting process is to minimize any damage to the edges of the material. However, conventional laser cutting techniques often produce poor results due to the size of the heat affected zone. Frank Schneider and his colleagues, therefore, decided to develop a series of new cutting methods, one of which uses an innovative short-pulse CO2 laser. By reducing the heat input, they were able to significantly reduce the thermal damage inflicted on the material. The Aachen researchers achieve a nearly complete elimination of thermal damages by using a high power ultrashort pulse laser. Even highly sensitive material combinations in aeronautics can be processed economically by these lasers at a performance of up to 500 Watt.
Many potential applications for FRP components

For the first time, these new laser welding and cutting methods will make it possible to automate the production of FRP components to create a production process that is simplified, fast and cost-effective. To demonstrate this new method’s practical feasibility, the Fraunhofer scientists have already successfully applied it to car seat backs made by the company Weber.
Lightweight components are the preferred technology for any application where a reduction in weight offers the opportunity to cut operating costs, from auto and aircraft manufacturing to shipbuilding and spaceflight engineering. Economical and versatile forms of lightweight design are also becoming increasingly popular for highly dynamic machines and civil engineering projects as an alternative to construction with standard components.

Our experts will be attending the JEC Europe 2012 Composites Show from March 27–29 in Paris to showcase a selection of FRP components produced using the new methods they have developed. These will include car seat backs, front-end components and other examples of lightweight construction applications that rely on laser technology.

Laser Lightweight Construction Center
One example of Fraunhofer ILT’s commitment to research in the field of lightweight construction is the Laser Lightweight Construction Center, which is currently being set up in the Institute's laser machine facility. This will be presented as part of the “Laser Technology Live” event at the International Laser Technology Congress AKL’12 on May 11, 2012. The new Center will bring together various laser systems under one roof, including a gantry system for fiber-coupled machining of 3D sheet metal and FRP components and a 2D laser machine with acceleration parameters of up to 5g. Fraunhofer ILT’s Lightweight Construction Centre will also include a machine with 3D capabilities and a CO2 laser for the machining of FRP components. Rounding out the center’s facilities are high power ultrashort pulse lasers that are able to process CFRP components in particular with an ablation and cutting quality unattained until now.

Your contacts at Fraunhofer ILT
Our experts are on hand to answer your questions:

Dipl.-Ing. Andreas Rösner
Plastics Cutting and Welding
Phone +49 241 8906-158
andreas.roesner@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Laser Cutting
Phone +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Dr.-Ing. Alexander Olowinsky
Head of Micro Joining Group
Phone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Dr. rer. nat. Dirk Petring
Head of Macro Joining and Cutting Group
Phone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht A new manufacturing process for aluminum alloys
19.06.2019 | DOE/Pacific Northwest National Laboratory

nachricht Innovative powder revolutionises 3D metal printing
19.06.2019 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>