Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Durability and Efficiency of 1 cm2 Size Perovskite Solar Cells

16.11.2015

A research group led by National Institute for Materials Science, Japan, improved the power conversion efficiency of perovskite solar cells to over 16% while employing cells that were greater than 1 cm2.

The cells have passed 1,000 Hours of Light Soaking (AM 1.5G, 100 mW/cm2) test, which is considered to be a basic criterion for practical use. These achievements were made by replacing the conventional organic materials with heavily doped inorganic metal oxide materials as the electron and hole extraction layers of the cells.


Distribution of power conversion efficiencies (PCEs) obtained from the perovskite solar cells fabricated by the research group.

Copyright : NIMS


Results of continuous exposure of perovskite solar cells to solar light (light intensity: 100 mW/cm2). The black line represents cells that were not exposed to light while the red line represents cells that were exposed to light.

Copyright : NIMS

A research group led by Dr. Liyuan Han, Director of the Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), Japan, improved the power conversion efficiency (PCE) of perovskite solar cells to over 16% while employing cells that were greater than 1 cm2.

The high efficiency cells also passed the durability test (exposure to AM 1.5G 100 mW/cm2 sunlight for 1,000 hours), which is considered to be a basic criterion for practical use. These achievements were made by replacing the conventional organic materials with inorganic materials as the electron and hole extraction layers of the solar cells.

There are high expectations for perovskite solar cells as they may be produced at lower cost than silicon solar cells. However, high efficiency perovskite solar cells have often been reached with poor stability and small area typically less than 0.1 cm2.

As such a small device size is prone to induce measurement errors, an obligatory minimum cell area of >1 cm2 is required for certified PCEs to be recorded in the standard “Solar Cell Efficiency Tables” that allows the comparison of competing technologies. Therefore, in order to realize practical use of perovskite solar cells, it is urgent to conduct studies using larger cells and attain more reliable PCEs.

To solve these issues, the research group first replaced the conventional organic materials with robust inorganic materials for use in electron and hole extraction layers. Because these layers fabricated with inorganic metal oxide materials have high electrical resistance, it was necessary to reduce the thickness of the layers to several nanometers (nm).

However, as the area of these thin layers increases, the occurrence of defects called pinholes also increases, leading to decreased PCEs. To deal with this problem, the research group increased the electrical conductivity of these layers by more than 10 times through heavily doping in both electron and hole extraction layers.

In this way, the group successfully fabricated layers that have fewer pinholes over wide areas and are applicable at thicknesses of up to 10 to 20 nm. Using these layers, a PCE of 16% was repeatedly attained while employing cells that were greater than 1 cm2.

Furthermore, the use of inorganic materials both in electron and hole extraction layers contributed to the control of PCE reduction within 10% even after undergoing 1,000 hours of continuous exposure to sunlight at an intensity of 1 sun, demonstrating outstanding reliability.

Based on these results, the group aims to develop more efficient light absorbing material capable of utilizing a greater amount of sunlight and precisely control the interfaces in the devices, for achieving higher PCEs and stability.

This study was conducted under the research topic “Device physics of dye-sensitized solar cells” in the research area “Creative research for clean energy generation using solar energy (research supervisor: Masafumi Yamaguchi, Principal Professor, Toyota Technological Institute)” as part of the Strategic Basic Research Programs (specifically the CREST program) sponsored by the Japan Science and Technology Agency (JST). The study was published in the online version of Science on October 29, 2015.

(This study was published in the online version of Science on October 29, 2015: W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, A. Islam, M. Gratzel and L. Han: Efficient and stable large-area perovskite solar cells with inorganic charge-extraction layers [DOI: 10.1126/science.aad1015]).

Associated links
Original article from NIMS

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>