Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced properties for polymer-based conveyor belts used in materials handling

10.12.2008
Cooperation between DuPont Engineering Polymers and TU Chemnitz

DuPont Engineering Polymers and the materials handling department of the Technical University of Chemnitz have agreed a three-year joint development program which will commence in October 2008.


Photo: DuPont
The new team seeking enhanced performance for conveyor belts based on high-performance polymers from DuPont: (left to right) Daniel Ayglon (DuPont), Dr. Andreas K. Müller (DuPont), Prof. Dr. Klaus Nendel (TU Chemnitz), Ernst A. Poppe (DuPont), Dr. Jens Sumpf (TU Chemnitz), Karsten Faust (DuPont), Frank Rasch (TU Chemnitz).

Its objective is to develop three-dimensionally flexible conveyor belts, made using high performance polymers from DuPont, with significant improvements in terms of stability and stiffness, as well as enhanced tribological properties. These conveyor belts should provide end-use benefits such as the ability to handle greater loads at faster speeds, increased energy efficiency and improved operating characteristics.

Conveyor units with components made from DuPont™ Delrin®, for example, are already in use across the beverage and electrical industries. Due to their low-wear/low-friction behaviour, parts made of Delrin®, such as chain links and fasteners, require little or no lubrication. Moreover, they consume less energy, operate more quietly and for longer than their metal counterparts.

The materials handling department at the TU Chemnitz specialises in research into the areas of tribological pairing of traction mechanisms and guidance systems, as well as new concepts for technical logistics. This work is carried out by Professor Dr-Ing. Klaus Nendel, and his team, at a technical school comprising 1000 m² of testing and laboratory space. Using specially-developed test rigs, wear and friction measurements can be taken to establish a correlation between test specimen behaviour and virtually lifelike conditions on the test rig.

“The industrial adoption of such high-performance conveyor belts requires the geometric adaptation of the belt’s design as well as a new material system, optimised in terms of its mechanical and tribological properties,” said Professor Dr-Ing. Klaus Nendel, TU Chemnitz. “We are pleased to welcome DuPont as our industrial partner, who will be able support our research with its comprehensive range of high performance polymers.”

“The joint project with TU Chemnitz provides a platform for the exchange of expertise between research, design developers and our product developers, which in turn will allow us to develop new materials tailored to current requirements, and to create new markets and applications for conveyor belt manufacturers,” added Dr.-Ing. Andreas K. Müller, responsible for college programs at DuPont Engineering Polymers in Germany.

The DuPont Oval, DuPont™, The miracles of science™, and Delrin® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>