Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced properties for polymer-based conveyor belts used in materials handling

10.12.2008
Cooperation between DuPont Engineering Polymers and TU Chemnitz

DuPont Engineering Polymers and the materials handling department of the Technical University of Chemnitz have agreed a three-year joint development program which will commence in October 2008.


Photo: DuPont
The new team seeking enhanced performance for conveyor belts based on high-performance polymers from DuPont: (left to right) Daniel Ayglon (DuPont), Dr. Andreas K. Müller (DuPont), Prof. Dr. Klaus Nendel (TU Chemnitz), Ernst A. Poppe (DuPont), Dr. Jens Sumpf (TU Chemnitz), Karsten Faust (DuPont), Frank Rasch (TU Chemnitz).

Its objective is to develop three-dimensionally flexible conveyor belts, made using high performance polymers from DuPont, with significant improvements in terms of stability and stiffness, as well as enhanced tribological properties. These conveyor belts should provide end-use benefits such as the ability to handle greater loads at faster speeds, increased energy efficiency and improved operating characteristics.

Conveyor units with components made from DuPont™ Delrin®, for example, are already in use across the beverage and electrical industries. Due to their low-wear/low-friction behaviour, parts made of Delrin®, such as chain links and fasteners, require little or no lubrication. Moreover, they consume less energy, operate more quietly and for longer than their metal counterparts.

The materials handling department at the TU Chemnitz specialises in research into the areas of tribological pairing of traction mechanisms and guidance systems, as well as new concepts for technical logistics. This work is carried out by Professor Dr-Ing. Klaus Nendel, and his team, at a technical school comprising 1000 m² of testing and laboratory space. Using specially-developed test rigs, wear and friction measurements can be taken to establish a correlation between test specimen behaviour and virtually lifelike conditions on the test rig.

“The industrial adoption of such high-performance conveyor belts requires the geometric adaptation of the belt’s design as well as a new material system, optimised in terms of its mechanical and tribological properties,” said Professor Dr-Ing. Klaus Nendel, TU Chemnitz. “We are pleased to welcome DuPont as our industrial partner, who will be able support our research with its comprehensive range of high performance polymers.”

“The joint project with TU Chemnitz provides a platform for the exchange of expertise between research, design developers and our product developers, which in turn will allow us to develop new materials tailored to current requirements, and to create new markets and applications for conveyor belt manufacturers,” added Dr.-Ing. Andreas K. Müller, responsible for college programs at DuPont Engineering Polymers in Germany.

The DuPont Oval, DuPont™, The miracles of science™, and Delrin® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.

Horst Ulrich Reimer | Du Pont
Further information:
http://www.dupont.com

More articles from Materials Sciences:

nachricht Detecting damage in non-magnetic steel with the help of magnetism
23.07.2018 | Johannes Gutenberg Universitaet Mainz

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>