Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Engineered Directional Nanofilm Mimics Nature’s Curious Feats

25.10.2010
In nature, textured surfaces provide some plants the ability to trap insects and pollen, certain insects the ability to walk on water, and the gecko the ability to climb walls.

Being able to mimic these features at a larger scale would spur new advances in renewable energy and medicine. In a paper published in the October 10 issue of Nature Materials, a team of researchers from Penn State, the Naval Research Laboratory, and Harvard Medical School report on the development of an engineered thin film that mimics the natural abilities of water striding insects to walk on the surface of water, and for butterflies to shed water from their wings.

Although superhydrophobic self-cleaning surfaces are an active area of research, this development marks an engineering breakthrough in the ability to control the directionality of liquid transport. Using an array of poly(p-xylylene) nanorods synthesized by a bottom-up vapor-phase technique, the researchers were able to pin water droplets in one direction with enormous adhesive forces proportional to the number of nanorods and the surface tension, while releasing droplets in the opposite direction.

The differential between the pin and release force is 80 micronewtons, over ten times the values reported in other engineered surfaces with ratchet-like features, and the first such surface to be engineered at the nanoscale. Recently, the authors also demonstrated directional adhesion and friction of these surfaces, similar to the way a gecko can climb a wall (J. Applied Physics, 2010). Gecko’s feet contain approximately 4 million hairs per square millimeter, whereas polymer nanorods can be deposited at 40 million rods per square millimeter.

The nanofilm produced by this technique, called oblique angle deposition, provides a microscale smooth surface for the transport of small water droplets without pumps or optical waves and with minimal deformation for self-powered microfluidic devices for medicine and for microassembly.

In work sponsored by the U.S. Navy, the nanofilm is envisioned for use as a coating that would reduce drag on the hull of vessels and retard fouling. Potential industrial and energy related uses are as directional syringes and fluid diodes, pump-free digital fluidic devices, increased efficiency of thermal cooling for microchips, coatings for tires, and even in energy production from rain drops.

The lead on the Penn State team, Melik Demirel, associate professor of engineering science and mechanics and corresponding author on the report, believes that the current laboratory based vapor phase technique, which although relatively simple still requires a vacuum, can be replaced by a liquid phase technique, which would allow for scaling the production of their material to industry size. “The major impact of our method is that for the first time we can create a controlled directional surface at the nanoscale,” Demirel concludes.

Funding for the Penn State research comes from the Office of Naval Research through a Young Investigators Grant to Demirel. Other authors include Niranjan Malvadkar, former Ph.D. student in Demirel’s lab and now a scientist at Dow Chemical R&D, and Koray Sekeroglu, a current Ph.D. student in Demirel’s lab, Matthew Hancock from Brigham and Women’s Hospital, Harvard Medical School, and Walter Dressick from the Naval Research Laboratory. The paper, “An engineered anisotropic nanofilm with unidirectional wetting properties,” is available at http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2864.html.

Contact Prof. Melik C. Demirel, Ph.D., at mdemirel@engr.psu.edu or 814-863-2270.

Prof. Melik C. Demirel | Newswise Science News
Further information:
http://www.psu.edu

Further reports about: Demirel Laboratory Medical Wellness Melik Mimics Nanofilm Naval microfluidic device water droplets

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>