Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elucidating the Atomic Mechanism of Superlubricity

11.01.2019

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated to this important project for years.


A ta-C coated steel pin oscillates while rubbing on a ta-C coated steel disc: the friction depends significantly on the amount of reactive lubricant centers (red circles).

© Fraunhofer Institute for Material and Beam Technology IWS


Oleic acid (colored) forms chemical bonds with both ta-C surfaces (black). Movement causes the oleic acid to pull, a hydroxyl group splits off and superlubricity is formed.

© Fraunhofer Institute for Mechanics of Materials IWM

Superlubricity could achieve not only minor, but also extreme friction reductions. If, for example, friction in the engines and transmissions of vehicles is reduced to minimum values, such as those occurring with superlubricity, annual global CO2 emissions could be reduced by several hundred million tons.

Two Fraunhofer Institutes have taken an important step toward this vision. In the PEGASUS II project funded by the Federal Ministry of Economics and Energy (BMWi), scientists from the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg and the Fraunhofer Institute for Material and Beam Technology IWS in Dresden have uncovered the atomic mechanism underlying superlubricity in a special friction partner system.

They investigated promising tribological systems in which the friction partners’ surfaces consist of special diamond-like carbon layers produced with a coating technology developed at the Fraunhofer IWS. These so-called tetrahedral amorphous carbon layers (ta-C) were combined with organic lubricants. Using simulations, the research team found out that the lubricant decomposes tribochemically to form graphene-like surfaces: the prerequisite for superlubricity.

Atomic Prerequisites for Supra Lubrication

Dr. Volker Weihnacht, Head of Carbon Layer Department, and Stefan Makowski, Group Leader Coating Properties at Fraunhofer IWS, systematically investigated the interaction of lubricants with ta-C carbon surfaces. Unsaturated fatty acids or glycerol achieved extremely low coefficients of friction at the superlubricity level.

They were astonished by two things: that this effect did not occur with the smallest changes in the molecular structure and that the friction was much higher. Thus, saturated fatty acids and alkanes did not achieve a superlubricity effect.

Prof. Michael Moseler and Dr. Gianpietro Moras at the Fraunhofer IWM explained the reason for this: “Using quantum chemical simulations, we were able to demonstrate that lubricant molecules with at least two reactive centers are able to form a chemical bond simultaneously with both ta-C-coated surfaces and are torn apart by the sliding motion and broken down into their constituent parts,” explains Prof. Moseler, head of the “Multiscale Modeling and Tribosimulation” group.

This allows for the release of the lubricant’s oxygen atoms and for these to be incorporated into the ta-C film. The oxygen disturbs the three-dimensional tetrahedral carbon network and aids in the formation of graphene-like surfaces, which effectively suppress friction as well as wear and thus ensure superlubricity.

Corresponding simulations with alkanes or saturated fatty acids as lubricants did not show these mechano-chemical processes because they have no or only one reactive center. “These lubricants only adhere to one surface and form a molecular brush – which reduces friction, but not at the superlubricity level,” says Prof. Moseler.

The newly discovered design rule states that several reactive centers must be present in the lubricant to cause superlubricity. “Of course, this rule is not limited to the fatty acids investigated here, it can also be transferred to other lubricants,” Prof. Moseler adds.

Guidelines for the Novel Lubricants’ Design

The research team’s results allow both predicting tribological properties of ta-C surfaces lubricated with different molecule types and forming guidelines for the novel organic friction modifiers’ design. Predictions for tailoring the carbon layers themselves and the necessary supra lubricant design rules for other surfaces, such as steel or aluminum, also become conceivable projects.

In 2019, the scientists at the Fraunhofer IWM and IWS will continue to work with industrial partners on translating quantum chemical findings into engineering solutions as part of the PROMETHEUS project with financial support from BMWi. Their goal: further reducing friction in combustion engines as well as other applications.

Additional: Details of the Superlubricity

In superlubricity, friction is extremely low with a friction coefficient µ of less than 0.01. The surfaces of tetrahedral hydrogen-free amorphous carbon layers (ta-C) and the most efficient lubrication possible with unsaturated fatty acids or glycerol compounds are promising for a friction system with minimal friction.

Quantum chemical simulations have shown that lubricant molecules, which can form a chemical bond simultaneously with both ta-C-coated surfaces, are torn apart by the sliding motion and broken down into their components. This mechano-chemical fragmentation leads to oxygen ta-C films doping – an important prerequisite for the in-situ synthesis of graphene-like surfaces effectively suppressing friction and wear.

Forming these supralubricating layers therefore requires the lubricant to have several reactive centers causing its mechano-chemical fragmentation. Unsaturated fatty acids feature a double bond and a carboxyl group as reactive centers, while glycerol possesses three reactive hydroxyl groups.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Michael Moseler l Phone +49 761 5142-332 l michael.moseler@iwm.fraunhofer.de | Fraunhofer Institute for Mechanics of Materials IWM, Freiburg l www.iwm.fraunhofer.de
Dr. Volker Weihnacht l Phone +49 351 83391-3247 l volker.weihnacht@iws.fraunhofer.de | Fraunhofer Institute for Material and Beam Technology IWS , Dresden l www.iws.fraunhofer.de

Originalpublikation:

Kuwahara, T.; Romero, P.A.; Makowski, S.; Christmas, V.; Moras, G.; Moseler, M.; Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C, Nature Communications 10 (2019) Artikelnummer, DOI 10.1038/s41467-018-08042-8

Weitere Informationen:

https://doi.org/10.1038/s41467-018-08042-8 - Link to the article

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

More articles from Materials Sciences:

nachricht Theoretical tubulanes inspire ultrahard polymers
14.11.2019 | Rice University

nachricht New spin directions in pyrite an encouraging sign for future spintronics
14.11.2019 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Researchers discover a new way in which insulin interacts with its receptor

18.11.2019 | Life Sciences

Bacterial protein impairs important cellular processes

18.11.2019 | Life Sciences

A better understanding of soft artificial muscles

18.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>