Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coatings Could Help Medical Implants Function Better

18.06.2013
Tiny implants to monitor bodily functions or to provide insulin or any other drug based on immediate need would be an advancement in personalized medicine, but a problem inherent in implants is the tendency of the human immune system to recognize the device as an invader and encapsulate it, preventing the device from doing its job.

Dr. Carmen Scholz of The University of Alabama in Huntsville (UAH) has been working on the customized synthesis of biocompatible polymers that can coat sensors that are then implanted into the body to cloak them from the immune system, often referred to as a stealth character.

“Our research is into anything that you can put onto a device so that the body cannot sense it,” Dr. Scholz said. “You’ve got to make it so the body doesn’t even see it.”

Recent research in which she was involved proved the in-vitro stability and non-toxicity of thin layers of customized block copolymers that coated tiny sensors, which were produced by a collaborator group at the University of Technology in Dresden, Germany. After further testing, the coated sensors could be implanted in patients to sense their blood glucose, carbon dioxide and serum pH levels. The coating utilizes a multi-layer concept that includes a hermetic sealing layer, a chemically inert innermost diffusion barrier for ions and humidity, and a surface layer of amphiphilic block copolymers.

Implanted into a patient beneath the skin, coated sensor data could be monitored wirelessly to control an insulin pump or monitor bodily functions to provide greater information to the physician treating a patient with respiratory problems. Since the coatings make the implants invisible to the immune system, the body doesn’t react to them as an invader and allows them to function. (“Smart Hydrogel-Based Biochemical Microsensor Array for Medical Diagnostics”; M. Guenther, G. Gerlach, T. Wallmersperger, M.N. Avula, S.H. Cho, X. Xie, B.V. Devener, F. Solzbacher, P. Tathireddy, J.J. Magda, C. Scholz, R. Obeid, T. Armstrong; Advances in Science and Technology, Vol. 85 (2013) pp 47-52)

The recent work is an offshoot of Dr. Scholz’ involvement in developing biocompatible coatings for the Boston Retinal Implant Project, founded in the 1980s and supported by the Veterans Administration. The project has been successful in developing medical devices to restore some degree of vision to patients who have gone blind from retinitis pigmentosa or age-related macular degeneration.

In that work, biocompatible coatings were needed to adapt retinal devices so that they would not be rejected while being used to deliver electrical signals to the brain and restore sight.

“I can make coatings for all sorts of implants,” Dr. Scholz said. “That’s our expertise, making these kinds of coatings. We can custom-make them.” But the applications for the coatings don’t stop at sensors and devices.

“We can make coatings and ‘decorate’ them with delivery systems for various medicines,” she said. “Physicians have told me that their biggest challenge with implanting devices is the trauma associated with surgery, which causes swelling. Swelling hinders healing. Loading the delivery systems with drugs that reduce swelling could be one way to speed up healing. Not only would these coatings make the device invisible to the body, they can also be used to help with the recovery process.

“All of these polymers, because of their chemical nature, lend themselves to drug delivery systems,” Dr. Scholz said. “All of this is really a neat chemistry.”

Dr. Scholz’ technique is unique because it uses no heavy metals to catalyze the polymerizations. That sets it apart from other researchers, who work on similar polymer systems but often use heavy metals and then have to remove them during the process.

“I contend that if I do not put it in,” she said, “I don’t have to worry about getting it back out.”

Further advances in the work at UAH depend on finding funding for the research. “The ideas are there and we have the proofs of concept of the ideas, but we need the funding,” Dr. Scholz said. “I can draw out the chemistry for you and show you how it can be done, but all that costs money.”

Jim Steele | Newswise
Further information:
http://www.uah.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>