Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barely scratching the surface: A new way to make robust membranes

13.12.2018

Argonne researchers have demonstrated a new technique's viability for membranes.

Whether it's tap water or a cup of coffee, almost everything we drink passes through some kind of filter. The ability to transform liquids this way is essential to daily life, yet it often rests on relatively delicate membranes that can quickly clog or degrade.


A new Argonne technique can grow material inside membrane structures, changing their chemistry without significantly affecting the pore shape. This allows scientists to improve upon membranes in various ways.

Credit: Argonne National Laboratory

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are designing ways to treat membranes so they can filter liquids better and resist degradation from industrial processing chemicals and biofoulants.

Argonne's patented sequential infiltration synthesis (SIS) technique can fundamentally alter a membrane from within, allowing for much greater control over its chemical makeup and pore size.

SIS has shown promise for semiconductor manufacturing, optical coatings and sponges that clean oil spills. Now, for the first time, Argonne researchers have demonstrated the technique's viability for membranes.

First conceived in 2010 by Argonne researchers, SIS is a cousin of atomic layer deposition, or ALD. Both techniques use chemical vapors to alter the interface of a material such as a membrane.

"But there is one important shortcoming of ALD for this application," said Seth Darling, director of the Institute for Molecular Engineering at Argonne and the Advanced Materials for Energy-Water Systems Energy Frontier Research Center. "As you coat pores in a membrane with a technique like ALD, you're constricting them."

That's because ALD basically adds layers on top of the membrane, which slowly decreases the pore diameters -- much the way you would restrict air flow through a vent in the wall if you kept painting over it. SIS, on the other hand, grows material inside the membrane structure itself, changing its chemistry without significantly affecting the pore shape.

"SIS can achieve many of the things that ALD can achieve in terms of engineering the interface," Darling said, "but with minimal pore constriction."

Nearly all commercial membranes are made of polymers -- large molecules formed from repeating chains of smaller molecules. SIS makes use of the space between those molecules, penetrating the surface of the membrane and diffusing into it with an inorganic material.

In their proof of concept, Darling and colleagues used SIS to plant the "seeds" for aluminum oxide and grew it within polyethersulfone (PES) ultrafiltration (UF) membranes, making them more resilient without compromising filtration ability. The results were published online on September 24 in JOM, the journal of The Minerals, Metals and Materials Society.

The SIS technique enables a range of improvements to membranes: the ability to prevent foulants from attaching to the surface, for example, or resistance to solvents that might be needed in an industrial setting but would dissolve conventional membrane materials.

The ability to engineer membranes this way can help cut costs at water treatment plants or in the chemical and pharmaceutical industries by reducing the downtime and cost associated with replacing spent membranes.

Darling and coworkers used SIS to create Oleo Sponge, which captures oil from water. In that case, a metal oxide grown within the sponge's surface serves as a grafting site for oil-loving molecules.

"You can imagine a similar strategy with membranes," he said, "Where you graft on molecules to lend some selectivity or other properties that you're looking for."

###

The research and development for the SIS technique was funded by DOE's Basic Energy Sciences and conducted in part at Argonne's Center for Nanoscale Materials, a DOE Office of Science User Facility. At this facility, the researchers performed filtration measurements, monitoring water flow through the membrane as a function of how much pressure is applied. The SIS technology, which has been patented and is available for licensing, emerges from Argonne's leading role in interface engineering.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Tona Kunz
tkunz@anl.gov
630-252-5560

 @argonne

http://www.anl.gov 

Tona Kunz | EurekAlert!
Further information:
https://www.anl.gov/article/barely-scratching-the-surface-a-new-way-to-make-robust-membranes
http://dx.doi.org/10.1007/s11837-018-3142-3

More articles from Materials Sciences:

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

nachricht The lightest electromagnetic shielding material in the world
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>