Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Added bacterial film makes new mortar resistant to water uptake

25.07.2016

Moisture can destroy mortar over time – for example when cracks form as a result of frost. A team of scientists at the Technical University of Munich (TUM) has found an unusual way to protect mortar from moisture: When the material is being mixed, they add a biofilm – a soft, moist substance produced by bacteria.

Oliver Lieleg usually has little to do with bricks, mortar and concrete. As a professor of biomechanics at the Institute of Medical Engineering (IMETUM) and the Department of Mechanical Engineering, he mainly deals with biopolymer-based hydrogels or, to put it bluntly, slime formed by living organisms.


The surface of the hybrid mortar (left) is covered with tiny crystalline spikes. This results in the so-called lotus effect.

Stefan Grumbein / TUM

These include bacterial biofilms, such as dental plaque and the slimy black coating that forms in sewage pipes. “Biofilms are generally considered undesirable and harmful. They are something you want to get rid of,” says Oliver Lieleg. “I was therefore excited to find a beneficial use for them.”

Inspiration from a conversation

During a conversation with a colleague at TUM, Lieleg came up with the idea of using biofilms to alter the properties of construction materials. Professor Christian Grosse holds the Chair of Non-destructive Testing. Among other things, he investigates self-healing concrete whose cracks close autonomously.

One variant of this concrete contains added bacteria. Activated by the ingress of moisture, the bacteria close the cracks with metabolic products containing calcium.

For his own project, Lieleg used mortar instead of concrete. Instead of mending cracks after damage has occurred, he wants to prevent moisture from penetrating into mortar in the first place. Such invading water can cause serious problems, for example by inducing the growth of mold or widening existing microcracks through freeze-thaw-cycles.

To prevent such water ingress, he takes advantage of the fact that some bacterial films are highly water-repellent. In the journal Advanced Materials, Lieleg and his colleagues describe how to make a moisture-resistant hybrid mortar.

A soil bacterium produces the bio-supplement

The key ingredient in the new material is biofilm produced by the bacterium Bacillus subtilis. “Bacillus subtilis normally lives in soil and is very common microorganism,” Oliver Lieleg explains. “For our experiments, we used a simple laboratory strain that grows rapidly, forms plenty of biomass and is completely harmless.” Lieleg’s team bred the bacterial film on standard culture media in the lab. They then added the moist biofilm to the mortar powder.

In the generated hybrid mortar, water was significantly less able to wet the surface compared to untreated mortar. To evaluate this surface property, the scientists measured the contact angle between water droplets and the surface. The steeper this angle, the more spherical the drops are, and the less likely the liquid is soaked into the material. Whereas this angle is only 30 degrees or less on untreated mortar, it is three times as high for drops on the hybrid mortar. Water droplets on polytetrafluoroethylene, better known by the trade name “Teflon”, have a similarly high contact angle.

Nanostructures in the mortar

An explanation for the water-repellent properties of the hybrid mortar can be found in electron microscope images: The surface is covered with tiny crystalline spikes. This results in what is known as the lotus effect, which also occurs on the leaves of the lotus plant. The small uniform structures on the surface ensure that only a small part of a water droplet is actually in contact with the leaf surface. The surface tension of the droplet therefor is stronger than the forces that make it adhere to the leaf.

Consequently, the droplet easily rolls off the leaf when the leaf is tilted. A cross-section of hybrid mortar shows that crystalline spikes are not only evenly distributed on the mortar surface but can also be found throughout the bulk volume of the mortar. This reduces the capillary forces that are normally responsible for the uprise of water in mortar when the material is immersed into liquid.

Although similar spikes also occur on untreated mortar, they are too long, rare and scattered for the lotus effect to occur. The researchers assume that the added biofilm stimulates uniform crystal growth throughout the volume of the hybrid material.

To find out if the hybrid mortar is resistant enough to actually be used in construction applications, it is currently undergoing mechanical tests in Christian Grosse’s department. “If the mortar is in fact suitable, there should be no problem for companies to produce it on a large scale,” Oliver Lieleg says. Both the bacterial strain used and the culture media are standard and relatively inexpensive.

“We‘ve also discovered in our experiments that freeze-dried biofilm can be used equally well. Then, in a powder form, the biological material can be stored, transported and addedmuch more easily .” In the future, the scientists want to examine whether the biofilm can also be used to protect concrete against water.

Contact

Prof. Dr. Oliver Lieleg
Professor of Biomechanics
Technical University of Munich
Institute of Medical Engineering (IMETUM) and Department of Mechanical Engineering
Telephone: +49 (0)89-289-10952
E-Mail: oliver.lieleg@TUM.de

Original publication

S. Grumbein, D. Minev, M. Tallawi, K. Boettcher, F. Prade, F. Pfeiffer, C.U. Große and O. Lieleg, "Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar", Advanced Materials (2016), DOI: 10.1002/adma.201602123

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33278/

Dr. Ulrich Marsch | Technische Universität München

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>