MIT IDs enzymes key to brainpower

Bolstering disintegrating neural connections may help boost brainpower in Alzheimer's disease patients, MIT researchers and colleagues will report in the Nov. 8 issue of Neuron.

The researchers zeroed in on the enzymes that manipulate a key scaffolding protein for synapses, the connections through which brain cells communicate. Synapses are weakened and lost in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.

“We identified a major underlying mechanism through which synapses are strengthened and maintained,” said Morgan H. Sheng, Menicon Professor of Neuroscience at MIT's Picower Institute for Learning and Memory. “The enzymes involved could be good targets for potential drug treatments.”

A protein called postsynaptic density-95 (PSD-95) is a key building block of synapses. Like the steel girders in a building, it acts as a scaffold around which other components are assembled. “The more PSD-95 molecules, the bigger and stronger the synapse,” said co-author Myung Jong Kim, a Picower research scientist.

Previous research had shown that mice genetically altered to have less PSD-95 experienced learning and memory problems.

In the current study, the researchers identified for the first time the enzymes that work behind the scenes on PSD-95, adding a phosphate group to a specific amino acid in the PSD-95 protein. This process–called phosphorylation–is critical for PSD-95 to do its job in supporting synapses.

“Adding a phosphate group to a single amino acid allows PSD-95 to promote synapse size and strength,” said Sheng, who also holds an appointment in MIT's Department of Brain and Cognitive Sciences and is a Howard Hughes Medical Institute investigator. “Therefore, promoting this process could help improve cognitive function.”

Sheng believes manipulating PSD-95 through phosphorylation could lead to bigger and more robust synapses, which would boost brainpower in both normal and diseased brains. “It's possible that promoting PSD-95 phosphorylation could also help neuropsychiatric illnesses in which synapse function goes awry, such as schizophrenia, depression and autism,” Sheng said.

In addition to Sheng and Kim, authors include Picower research scientist Kensuke Futai; Yasunori Hayashi, MIT assistant professor of neurobiology and RIKEN-MIT investigator; and Jihoon Yu and Kwangwook Cho of the University of Bristol in England.

This research is suported by the National Institutes of Health.

Media Contact

Elizabeth A. Thomson MIT News Office

More Information:

http://www.mit.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Lower dose of mpox vaccine is safe

… and generates six-week antibody response equivalent to standard regimen. Study highlights need for defined markers of mpox immunity to inform public health use. A dose-sparing intradermal mpox vaccination regimen…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

Partners & Sponsors