Ancient organisms discovered in Canadian gold mine

Now, a team of scientists present direct evidence that the three domains of life coexisted at least as long as 2.7 billion years ago.

The discovery came from chemical examination of shale samples, loaded with oily lipid remains of archaea found in a deep Canadian gold mine near Timmins, Ontario, about 400 miles north of Toronto.

Details are reported in the August 20-24 early edition of the Proceedings of the National Academy of Sciences.

Fabien Kenig, associate professor of earth and environmental sciences at the University of Illinois at Chicago, and his former doctoral student Gregory Ventura, spent nearly five years carefully analyzing the shale samples, originally to compare what they found with an earlier Australian study suggesting the presence of eukaryotes some 2.7 billion years ago.

Ventura, now a post-doctoral researcher at the Woods Hole Oceanographic Institution, said initial laboratory results stunned him. “I thought there was something very wrong, that the samples were contaminated,” he said.

But Kenig was more confident they were on to something significant.

They didn't learn the true value of the material until it was analyzed using a sophisticated, multi-dimensional gas chromatography instrument at the U.S. Coast Guard Academy.

When they analyzed a sample, Kenig said, they were able to pull apart its complex mixture of molecular fossils, and found it was “essentially made of archaea-derived lipids.”

The archaea lived in water and sediments when the region was covered by the sea. After burial, the archaea thrived where very hot water circulated in the rocks and where gold was deposited. Later, shale containing fossilized archaea got buried under thousands of feet of volcanic rock and sediments.

The researchers studied shale samples using a scanning electron microscope. They also analyzed rock formation, mineral deposits and molecular fossils. Findings led the researchers to conclude that archaea and the other two life domains coexisted.

“Now we are sure the three domains of life were well separated and evolving (independently) by 2.7 billion years ago,” said Kenig.

The finding broadens the known geographic reach of archaea during this time period, adding proof that the ancient organisms existed both in sedimentary environments and in subsurface hydrothermal settings.

“Considering the extent and composition of today's deep biosphere, it is likely that such hydrothermal subsurface communities have existed for much of the Earth's history,” Ventura and Kenig write.

Media Contact

Paul Francuch EurekAlert!

More Information:

http://www.uic.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors