Why are there no Unicorns?

The problem highlights a general issue in evolutionary biology of what determines the range of plants and animals we see compared to those that might have evolved theoretically. To what extent does observed biodiversity reflect the rules of development or the action of Darwinian selection?

To address this problem, Enrico Coen at the John Innes Centre and Dr. Przemyslaw Prusinkiewicz and colleagues at the University of Calgary analysed not Unicorns, but a more tractable system, the evolution of flower branching displays, or inflorescences. Flowering plants have three basic types of inflorescence – racemes, cymes and panicles. Theoretically there are many other possible branching arrangements so why has nature chosen only these three? The researchers showed how the three types arise quite naturally from a simple mathematical model for how growing tips switch to make flowers. The model was supported by experimental studies on genes in the garden weed Arabidopsis.

So it looks like the way genes control development plays an important role in determining what sorts of structure evolve. But the researchers also showed that selection plays a key part in setting the routes that evolution may take within the space of possibilities. They revealed novel paths, called evolutionary wormholes that link together different inflorescence types, allowing one to evolve into another. Perhaps there are no Unicorns because no evolutionary wormholes exist that connect them to horses, or maybe the wormholes are there but evolution has not had time to go down them. The riddle of the Unicorn remains but at least scientists now have a more rigorous mathematical and experimental framework in which to consider such issues.

Media Contact

Zoe Dunford alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors